

Two-Year Postgraduate Program

Master of Science Biochemistry

Faculty of Applied Sciences

Parul University Vadodara, Gujarat, India

Faculty of Applied Sciences Master of Biochemistry

1. Vision of the Department

To evolve a right blend of traditional and modern sciences which are essential for the present-day innovations in science.

2. Mission of the Department

	Awaken the young minds and discover their talents both in theory and in practical through dedication
M1	to teaching, commitment to students and innovative instructional methods.
	To support the developmental activities of the College and make the Department vibrant
M2	
	To organize critical contributions in areas of emphasis such as faculty, modern labs, department
M3	library and demonstrate a high level of competence in the study of Biochemistry.

3. Program Educational Objectives

The statements below indicate the career and professional achievements that the M.Sc. Biochemistry curriculum enables postgraduates to attain.

PEO 1	Demonstrate the ability to critically analyze complex biochemical problems, formulate
	hypotheses, design experiments, and interpret data to contribute meaningfully to scientific
	advancement and innovation.
PEO 2	Advanced knowledge and skills in biochemical principles, methodologies, and technologies,
	enabling them to excel in research, academia, industry, or healthcare.
PEO 3	Professional development opportunities to enhance their expertise, adapt to emerging trends
	in biochemistry, and advance their careers in diverse professional settings.
PEO 4	Collaborate effectively with professionals from diverse disciplines, integrating knowledge
	and perspectives to address complex challenges at the interface of biochemistry with fields
	such as biology, chemistry, medicine, and engineering.

4. Program Learning Outcomes

Program Learning outcomes are statements conveying the intent of a program of study.

PLO 1	Disciplinary	Execute strong theoretical and practical understanding generated						
	Knowledge	from the specific programme in the area of work.						
PLO 2	Critical Thinking	Identify the problem by observing the situation closely, take						
	and Problem Solving	actions and analytical skills to design the solutions.						
PLO 3	Social Competence	Exhibit thoughts and ideas effectively, build effective interactive						
		and presenting skills to meet global competencies.						
PLO 4	Research-related	Infer scientific literature, build sense of enquiry and identify and						
	Skills and Scientific	consult relevant sources to find answers.						
	Temper							
PLO 5	Trans-disciplinary	Trans-disciplinary Create new conceptual, theoretical and specific approaches to						
	Knowledge	address a common problem.						
PLO 6	Personal and	Execute interpersonal relationships, self-motivation and						
	Professional	adaptability skills and commit to professional ethics.						
	Competence							
PLO 7	Effective Citizenship	Demonstrate empathetic social to professional ethics and						
	and Ethics	responsibility.						
PLO 8	Environment and	Understand the impact of the scientific solutions in societal and						
	Sustainability	environmental contexts.						
PLO 9	Self-directed and	Acquire the ability to engage in independent and life-long learning						
	Life-long learning	in broadest context of socio-technological changes.						

5. Program Specific Learning Outcomes

PSO 1	Recent Research	Demonstrate advanced skills in employing quantitative and
	trends	qualitative research methods, data collection, analysis, and
		synthesis, with an emphasis on addressing real-world
		applicative challenges.in different areas of biochemistry.
PSO 2	Data Analysis and	Apply appropriate techniques for the qualitative and
	Interpretation	quantitative analysis of chemicals in laboratories and
	interpretation	industries.
PSO 3 Interdisciplinary		Expect to diagnose the pathogenic microbes in the laboratory
	Skills	by applying the knowledge of microbial culture techniques.

6. Credit Framework:

Semester wise Credit distribution of the Programme					
Semester-1	22				
Semester-2	22				
Semester-3	22				
Semester-4	29				
Total Credits	95				

Category wise Credit distribution of the Programme						
Category	Credit					
Major Core	48					
Multidisciplinary	20					
(Interdisciplinary)						
Skill Enhancement Courses	7					
Research Project/Dissertation	20					
Total Credits	95					

7. Program Curriculum:

Semester 1								
Sr.	Subject							
No.	Code	Subject Name	Credit	Lect	Lab	Tut		
1	11203108	Advanced Enzymology	4	4	0	0		
2	11203109	Biophysical Chemistry	4	4	0	0		
3	11203110	Chemistry Of Biomolecules	4	4	4	0		
4	11203111	Analytical Methods Lab 2	2	0	4	0		
5	11203113	Cell Biology and Physiology	4	4	0	0		
6	11203112	Biochemical Analysis Lab 1	2	0	4	0		
7	11203114	Seminar	2	0	0	2		
		Total	22	16	08	2		
		Semester 2			•			
8	11203155	Intermediary Metabolism	4	4	0	0		
9	11203156	Plant Biochemistry	4	4	0	0		
10	11203157	Microbial Biochemistry	4	4	0	0		
11	11203159	Lab-1 Enzymology	2	0	4	0		
12	11203160	Lab-2 Plant Biochemical Analysis	2	0	4	0		
	11203180	Nutritional Biochemistry and Analytical Methods						
13		(Elective-1)	,					
	11203181	Ecology And Environmental Biochemistry	4	4	0	0		

		(Elective-2)				
14	11203161	Seminar	2	0	0	2
		Total	22	16	8	2
		Semester 3				
15	11203201	Genetics and Biostatistics	4	4	0	0
16	11203203	Immunology	4	4	0	0
17	11203204	Molecular Biology-I	4	4	0	0
18	11203205	Lab-1 Microbiology	2	0	4	0
19	11203206	Lab-2 Molecular Biology	2	0	4	0
	11202230	Genomics and Proteomics (Elective-1)			0	0
20	11203234	Endocrinology (Elective-2)	4	4	0	0
21	11203207	Seminar	2 0		0	2
		Total	22	16	08	2
		Semester 4				
22	11203217	Clinical Biochemistry	4	4	0	0
	11203280	Molecular Biology-II & Bioinformatics	4	4	0	0
23	11203281	Basics of Hormones	4	4	0	0
24	11203219	Dissertation Work	20 0		10	0
25	11202256	Seminar	1	0	0	1
	<u> </u>	Total	29	08	10	1
		Total		9	25	

a. Course Name: Advanced Enzymology

b. Course Code: 11203108

c. Prerequisite: Inclination to learn advanced techniques of enzyme catalysis with examples and different mechanisms of catalysis with applications.

d. Rationale: The course will provide in depth knowledge about mechanisms of enzyme catalysis which are important for metabolic pathways. The concept of turnover number and Kcat values for optimization of industrial enzymes. The different regulatory strategies of enzyme catalysis.

e. Course Learning Objective:

CLOBJ 1	Interpreting the fundamentals of enzyme properties,						
	nomenclatures, characteristics and mechanisms.						
CLOBJ 2	Apply biochemical calculation for enzyme kinetics.						
CLOBJ 3	Analyzing the factors affecting enzymatic reactions.						
CLOBJ 4	Explaining the concepts of co-operative behavior, enzyme inhibition and						
	allosteric regulation.						

f. Course Learning Outcomes:

CLO 1	Identifying structure of action of enzymes.
CLO 2	Exemplifying the structure, Function and kinetics of enzymes.
CLO 3	Identifying the on current applications and future potential of enzymes.
CLO 4	Defining in detail law of thermodynamics

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
				Internal Evaluation		ESE			
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	18%	12
	Introduction of enzymes-Classification of enzymes (IUB),		
	Remarkable properties of enzymes, catalytic power,		
	specificity, Formation of Enzyme Substrate complex -		
	Fischer and Koshlandmodels. Holoenzyme, apoenzyme,		
	coenzyme and cofactors. Purification of enzymes, enzyme		
	assay- coupled kinetic assay, ELISA, RIA and manometric		
	assay and Enzyme units. Isoenzymes, multienzyme		
	complexes (pyruvate dehydrogenase complex), Ribozyme and		
	Abzyme.		
2	UNIT 2	22%	13
	Enzyme kinetics-Velocity of a reaction, order of a reaction,		
	progress curve for enzyme catalyzed reactions. Transition		
	state theories, methods use in the investigation of kinetics of		
	enzyme catalyzed reactions - initial velocity studies,		
	ionselective electrode studies and rapid reaction technology.		
	Factors affecting enzyme catalysis - pH, Temperature and		
	substrate concentration on enzyme kinetics. Enzyme kinetics		
	of single substrate reaction-Derivation Michaelis-Menton		
	equation.Significance of Km and Vmax values. Linear		
	transformations of Michaelis-Menton equation		
3	UNIT 3	18%	11
	Kinetics of bi substrate reactions- Terminology and		
	classification of Bisubstrate with examples of each class.		
	Kinetics of multisubstrate reactions. Rate equations for		
	Ping Pong and ordered Bi-Bi reaction mechanism.		
	Differentiating Bi substrate mechanisms. Enzyme		
	inhibition: reversible inhibition- competitive,		
	noncompetitive, uncompetitive and mixed inhibition -		

4	partial inhibition substrate inhibition and allosteric inhibition. Irreversible inhibition. Suicide inhibition (DFMO-Di fluoro methoxy ornithine, 5 Fluro dUMP). UNIT 4 Enzyme catalytic mechanisms: general acid base catalysis, electrostatic catalysis, covalent catalysis, intramolecular catalysis, and enzyme catalysis. Mechanistic role of following coenzymes in enzyme catalyzed reactions — thiamine pyrophosphate, nicotinamide nucleotides, flavin nucleotides, PLP, biotin and tetrahydrofolate. Mechanisms of reaction	20%	11
	catalyzed by chymotrypsin, lysozyme, Ribonuclease and Carboxypeptidase A	220/	12
5	Regulation of enzyme activity- covalent modification, zymogen activity and protein proteininteraction. Allosteric enzyme action: Cooperativity – the Hill equation. Sigmoidal kinetics the MWC and KNF models – significance of sigmoidal behaviors – study of ATCase as a typical allosteric enzyme. Enzyme Technology: Industrial uses of enzymes-Food and Pharmaceutical industries. Clinical Enzymology-Serum	22%	13
	enzymes in health and diseases. Immobilized enzymes Total	100%	60 hr

- 1. "Principles of Biochemistry, 1993A..L.Lehninger, Nelson and Cox (C.B.S., India).
- 2. Principles of Biochemistry General Aspects 1983 Smith et al., general. (Mc Graw Hills)
- 3. Biochemistry, (2 nd edition) Voet & Voet.
- 4. Biochemistry (4 th edition) –A.Stryer (Freeman)
- 5. Text book of biochemistry with clinical correlations. (4 th edition) Thomas M.Devlin
- 6. Text book of Biochemistry, (1908) West and Todd. (Mac Milan)
- 7. Biochemistry Zubay.
- 8. Nucleic acid Biochemistry and Molecular biology –Main Waring, et al.
- 9. Understanding enzymes. (1985) Trevor Palmer (John Wiley)
- 10. Fundamentals of Enzymology (II ed) by Nicholas C Price and Lewis Stevens, Oxford UnivPress.
- 11. Principles of Enzymology for Food Science (1972) by J R Whitkar, M Dekker Publishers.
- 12. Enzymes (3 rd ed 1979) Dixon M and Webb, E C, Longmans, London.
- 13. The chemical kinetics of enzyme action by K J Laidler and P S Bunting, Oxford University Press, London.
- 14. Enzyme structure and function by S Blackburn, Marcel Dekker, Inc., NY.

a. Course Name: Biophysical Chemistry

b. Course Code: 11203109

c. Prerequisite: Prior knowledge on modern methods and technologies used in biochemical

analysis

d. Rationale: The main objective of the course is qualitative and quantitative analysis of different molecules taking place in a biochemical reaction. It includes the development of different tools and methods for identification, analysis and examination of physical properties of different biochemical compositions to provide better chemical information. It helps the biochemistry students in understanding the basic science in a variety of applications.

e. Course Learning Objective:

CLOBJ 1	Demonstrate broad knowledge in modern analytical instrumentation with				
	deep knowledge in its core concepts and its applications.				
CLOBJ 2	Understand the principle, Instrumentation of different types of Light				
	microscopy and electron microscopy and its applications in various fields of				
	research.				
CLOBJ 3	Acquire knowledge about the basics and latest developments in the				
	instrumentation techniques of Centrifugation, Electrophoresis (IEF, 2D				
	PAGE) and Chromatography and their applications in various research fields.				

f. Course Learning Outcomes:

CLO 1	Finding the Basic techniques useful to handle the laboratory.
CLO 2	Evaluate the theory and principles of all Spectrophotometric techniques.
CLO 3	Develop the biological samples to learn principles and instrumentation part.

g. Teaching & Examination Scheme:

Teaching Scheme						Evaluation	Scheme		
				I	Internal Evaluation ESE				
L	Т	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	25%	15
	Basic TechniquesBuffers; Methods of cell disintegration;		
	Enzyme assays and controls; Detergents and membrane		
	proteins; Dialysis, Ultrafiltration and other membrane		
	techniques Spectroscopy Techniques UV, Visible and		
	Raman Spectroscopy; Theory and application of Circular		
	Dichroism; Fluorescence; MS,NMR, PMR, ESR and		
	Plasma Emission spectroscopy.		
2	UNIT-II	25%	15
	Chromatography Techniques-TLC and Paper		
	chromatography; Chromatographic methods for		
	macromolecule separation - Gel permeation, Ion		
	exchange, Hydrophobic, Reverse- phase and Affinity		
	chromatography; HPLC and FPLC; Criteria of protein		
	purity .Electrophoretic techniquesTheory and application		
	of Polyacrylamide and Agarose gel electrophoresis;		
	Capillary electrophoresis; 2D Electrophoresis; Disc gel		
	electrophoresis; Gradient electrophoresis; Pulsed field gel		
	electrophoresis		
3	UNIT-III	25%	15
	Centrifugation-Basic principles; Mathematics & theory		
	(RCF, Sedimentation coefficient etc); Types of centrifuge		
	- Microcentrifuge, High speed & Ultracentrifuges;		
	Preparative centrifugation; Differential & density gradient		
	centrifugation; Applications (Isolation of cell		
	components); Analytical centrifugation; Determination of		
	molecular weight by sedimentation velocity &		
	sedimentation equilibrium methods		
4	UNIT-IV	25%	15

Total	100%	60 Hr
Sectroscopy (AAS), I.R. Spectroscopy.		
Fluorimetry, Flame photometry, Atomic absorption		
applications-colorimetry, Spectrophotometry,		
Beer-Lambert's Law. Instrumentation and biological		
Spectroscopic techniques: Principles of Spectroscopy;		
northern blot – general methodology and applications.		
Blotting techniques: Southern blot, western blot, and		

- 1. John M. Wriggelssorth.
- 2. Principles & Techniques of Practical Biochemistry Wilson and Walker.
- 3. Analytical Biochemistry. David. J.Home & Hazelpeck. (Longman).
- 4. Practical Clinical Biochemistry, (5 th edition) H.Varley, A.H.Cowenlock & M.Bell
- 5. A manual of Radiology. J.C.Steward & D.M. Hawcroft. (Sidgwick)
- 6. Instrumental methods of chemical analysis B.K. Sharma publications)
- 7. Physical principles and Techniques of Protein chemistry Leach. (Parts A, B, C)
- 8. Text book of biochemistry west and Todd
- 9. Physical Biochemistry (II ed 1983) by D Friefelder, WH Freeman & Co., USA
- 10. Biophysical chemistry Upodhya and Nath (Himalaya publications)
- 11. Physical Biochemistry (II ed 1985) by van Holde KE, Prentice Hall Inc., New Jersey.
- 12. Chromatography: A laboratory handbook of chromatographic and electrophoretic methods. (IIIrd 1975) by Erich Heftman, van Nostrand Reinhold,

a. Course Name: Chemistry of Biomolecules

b. Course Code: 11203110

c. Prerequisite: Basic knowledge about biomolecules and their role.

d. Rationale: The objective is to study about the structure and biological functions of macromolecules such as proteins, polysaccharides, lipids, and nucleic acids, as well as small molecules such as primary metabolites, secondary metabolites, and natural products.

e. Course Learning Objective:

CLOBJ 1	Defining the classification of biomolecules		
CLOBJ 2	Inferring the basic reaction types and mechanisms of biomolecules.		
CLOBJ 3	Identifying the structures and functions of biomolecules.		
CLOBJ 4	Associating and finding the chemical and biochemical properties of		
	biomolecules.		

f. Course Learning Outcomes:

CLO 1	Correlate the basic structure of Biomolecules.		
CLO 2	Relating Conformation, isomerism of the bimolecular structures and their		
	importance.		
CLO 3	Illustrating role of Building blocks of carbohydrates and proteins and their		
	appearance in biological matters.		
CLO 4	Assessing nucleic acids structure, properties and their functions and		
	enzymatic hydrolysis techniques.		

g. Teaching & Examination Scheme:

Teaching Scheme						Evaluation	Scheme		
				I	Internal Evaluation ESE				Total
L	T	P	C	MSE	CE	P	Theory	P	1000
4	-	-	4	20	20		60	ı	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	18%	11
	Stereochemistry: Relation between chirality and optical		
	activity. Representation of chiral structure by Fishers		
	projection, perspective, Newman and Sawhare formulas,		
	molecular models.Classification of chiral compounds -		
	DL, RS methods. Geometrical isomerism (E and Z		
	nomenclature).		
	Porphyrins: Sturcture, properties and Identification.		
	Structure of metalloporphyrins-heme, cytochromes and		
	chlorophylls		
2	UNIT-II	22%	13
	Carbohydrates: Classification of carbohydrates, reactions		
	of monosaccharides, structural elucidation of starch and		
	glycogen. Structure and biological importance of		
	aminosugars, Glycoproteins, proteoglycons, Bacterial cell		
	wall polysaccharides, blood group substances and		
	Lectins.		
	Lipids: classification, physicochemical properties of fats		
	and oils. Characterization of natural fats and oils, structure		
	and biological role of triacyl glycerol, phospholipids,		
	sphingolipids, gangliolipids. Prostaglandins,		
	thromboxanes,leucotrines - steroids - cholesterol, and		
	bile acids.		
3	UNIT-III	18%	12
	Aminoacids and proteins: Classification of amino acids,		
	acid base properties of amino acids, pKa of functional		
	groups of amino acids, chemical reaction of aminoacids,		
	Nonprotein amino acids.Peptide bond - structure and		
	conformation-Ramachandran plot. Merrifield solid phase		

	Total	100%	60 Hr
	method. Sanger's dideoxy chain termination method.		
	acids. DNA sequencing methods: Maxam and Gilbert's		
	effects, Tm, cot curves. Enzymatic hydrolysis of Nucleic		
	denaturation and renaturation, hypo and hyper chromic		
	nucleic acids, properties of nucleic acids in solution		
	RNAs. Isolation, fractionation and characterization of		
	DNA, different types of DNA, types of RNA structures of		
	polynucleotides – secondary and tertiary structure of		
	pyrimidine bases – nucleosides, nucleotides,		
	Nucleic acids: Structure of nucleic acids – purine and		-
5	UNIT-V	22%	13
	proteins. Chemical modification of proteins.		
	(Molecular chaperones) Denaturation and renaturation of		
	chymotrypsin, Quaternary structure – Hemoglobin – protein folding		
	features of myoglobin, lysozyme, ribonuclease,		
	structure and triple helical structure. Tertiary structural		
	structure, secondary structure alpha,beta pleated sheet		
	Structural organization of proteins, elucidation of primary		
4	UNIT-IV	20%	11
	and purification of proteins. Criteria of purity of proteins.		
	peptide synthesis, naturally occurring peptides. Isolation		

- 1. Lehininger's Principles of Biochemistry (2000) by Nelson, David L and Cox, M M, Macmillan/worth, NY.
- 2. Fundamentals of Biochemistry (1999) by Donald Voet, Judith G Voet and Charlotte W Pratt, John Wiley & Sons, NY.
- 3. Biochemistry III ed (1994) by Lubert Stryer, WH Freeman and Co., San Francisco.
- 4. Outlines of Biochemistry (1987) by Eric E Conn, P K Stumpf, G Bruening and Ray H Doi, John Wiley & Sons, NY.

- 5. Principles of Biochemistry General aspects 1983 Smith etal. (McGraw Hills)
- 6. Biochemistry (4 th edition) Thomas M.Devlin.
- 7. Text book of Biochemistry (1908) west and Todd. (Mac Milan)
- 8. Text book of Biochemistry Zubay.
- 9. Biochemistry Garret and Girsham

a. Course Name: Lab 2-Analytical Methods

b. Course Code: 11203111

c. Prerequisite: Basic Knowledge about properties of biomolecules

d. Rationale: The "Biochemical analysis lab" is vital as it offers hands-on experience, reinforcing theoretical knowledge by applying basic biochemical concepts, fostering practical skills essential for life sciences disciplines.

e. Course Learning Objective:

CLOBJ 1	Acquire knowledge about different analytical techniques			
CLOBJ 2	Infer basic and advanced techniques for identification and differentiation.			
CLOBJ 3	Deduce Knowledge about different techniques for isolation of			
	biomolecules from biological samples			
CLOBJ 4	To apply knowledge about advanced techniques for analysis of clinical			
	samples.			

f. Course Learning Outcomes:

CLO 1	Demonstrate broad knowledge in modern analytical instrumentation with
	deep knowledge in its core concepts and its applications
CLO 2	Gain extensive exposure from basic to latest techiques.
CLO 3	Demonstrate skills to explainabout principle, Bioinstrumentation and applications of latest spectroscopy techniques like UV-Visible spectroscopy
CLO 4	Compare and contrast different analytical techniques based on biomolecules properties

g. Teaching & Examination Scheme:

Teaching Scheme						Evaluation	Scheme		
				1	Internal Evaluation ESE				
L	Т	P	C	MSE	CE	P	Theory	P	Total
	-	4	2	-	20	20	-	60	100

h. Experiment List:

Exp.	Name of the Experiment
No.	
1	Effect of solvent system on the Rf value of two solutes using paper and Thin layer
	Chromatography.
2	Separation of purines and pyrimidines by paper chromatography.
3	Separation of amino acids by paper chromatography
4	Separation of sugars by TLC.
5	Separation of lipids by and TLC
6	Separation of amino acids by Ion exchange chromatography (demonstration)
7	Separation of metalloenzymes by affinity chromatography
8	Determination of Molecular weight of protein by gel permeation chromatography.
9	Precipitation of serum proteins and desalting by Dilaysis (or) Spin gel permeation
	chromatography – Lyophilization of desalted protein fractions.
10	Separation of Serum proteins by paper electrophoresis
11	Determination of subunit composition of protein by SDSPAGE
12	Absorption spectra of phenol red, Amino acids and Nucleic acids.
13	Verification of Beer's law and determination of molar extinction coefficient using
	Bromophenol blue (or) Para nitrophenol.
14	Isolation and spectrophotometric characterization of metalloporphyrin.
15	Measurement of specific rotation of sugars by polarimeter

- 1. J. Jayaraman, Laboratory Manual in Biochemistry. New Age International Pvt Ltd Publishers. 2011 (Paperback).
- 2. S. Sadasivam, A. Manickam, Biochemical Methods. New age publishers.
- 3. .S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry.
- 4. Harold Varley, Practical Clinical Biochemistry, CBS.edition, 2006.
- 5. Hans Bisswanger, Practical Enzymology. Wiley VCH. 2nd Edition, 2011.
- 6. Enzyme Assays: A Practical Approach (Practical Approach Series) Oxford University Press, U.S.A. 2 edition, 2002.

a. Course Name: Cell biology and physiology

b. Course Code: 11203113

c. Prerequisite: Awareness on structure and function of cell organelles and cell division

d. Rationale: To study the structure and function of cells and to know about extracellular Matrix and cell communication. Understanding the function of intracellular organelles and cell cycle mechanism

e. Course Learning Objective:

CLOBJ 1	Inferring the origin of life, from the abiotic world to multicellular
	organisms, including an account of endosymbiosis
CLOBJ 2	Determining the structural characteristics of prokaryotic and eukaryotic
	cells
CLOBJ 3	Interpreting the structure, properties and functions of various classes of
	macromolecules in cells
CLOBJ 4	Correlating the intricate relationship between various cellular organelles
	and their corresponding functions

f. Course Learning Outcomes:

CLO 1	Analyzing Cells theory and their evolution.
CLO 2	Interpreting role of different cell organelles.
CLO 3	Associating Cells and their cellular movements with formation.
CLO 4	Differentiation of cells like meristem in plants, stem cells from animals will understand.

g. Teaching & Examination Scheme:

Teaching Scheme			Evaluation Scheme						
				I	Internal Evaluation ESE				
L	Т	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20		60	-	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	20%	12
	Cell Theory & Methods of Study		
	Microscope and its modifications – Light, phase contrast		
	and interference, Fluorescence, Confocal, Electron (TEM		
	and SEM), Electron tunneling and Atomic Force		
	Microscopy, etc.		
	Membrane Structure and Function		
	Structural models; Composition and dynamics; Transport		
	of ions and macromolecules; Pumps, carriers and		
	channels; Endo- and Exocytosis; Membrane		
	carbohydrates and their significance in cellular		
	recognition; Cellular junctions and adhesions; Structure		
	and functional significance of plasmodesmata.		
2	UNIT-II	20%	12
	Organelles		
	Nucleus – Structure and function of nuclear envelope,		
	lamina and nucleolus; Macromolecular trafficking;		
	Chromatin organization and packaging; Cell cycle and		
	control mechanisms; Mitochondria – structure,		
	organization of respiratory chain complexes, ATP		
	synthase, Structure- function relationship; Mitochondrial		
	DNA and male sterility; Origin and evolution;		
	Chloroplast– Structure-function relationship; Chloroplast		
	DNA and its significance; Chloroplast biogenesis; Origin		
	and evolution.		
3	UNIT-III	18%	11
	Endo-membrane System and Cellular Motility		
	Structure and function of microbodies, Golgi apparatus,		
	Lysosomes and Endoplasmic Reticulum; Organization		

	and role of microtubules and microfilaments; Cell shape		
	and motility; Actin-binding proteins and their		
	significance; Muscle organization and function;		
	Molecular motors; Intermediate filaments; Extracellular		
	matrix in plants and Animals		
4	UNIT-IV	18%	11
	Cellular Movements and Pattern Formation		
	Laying of body axis planes; Differentiation of germ		
	layers; Cellular polarity; Model plants like Fucus and		
	Volvox; Maternal gene effects; Zygotic gene effects;		
	Homeotic gene effects in Drosophila; Embryogenesis and		
	early pattern formation in plants; Cell lineages and		
	developmental control genes in Caenorhabditis		
5	UNIT-V	24%	14
	Differentiation of Specialized Cells		
	Stem cell differentiation; Blood cell formation;		
	Fibroblasts and their differentiation; Cellular basis of		
	immunity; Differentiation of cancerous cells and role of		
	proto- oncogenes; Phase changes in Salmonella; Mating		
	cell types in yeast; Surface antigen changes in		
	Trypanosomes; Heterocyst differentiation in Anabaena;		
	Sex determination in Drosophila. Plant Meristem		
	Organization and Differentiation Organization of Shoot		
	Apical Meristem(SAM); Organization of Root Apical		
	Meristem(RAM); Pollen germination and pollen tube		
	guidance; Phloem differentiation; Self-incompatibility		
	and its genetic control; Embryo and endosperm		
	development; Heterosis and apomixis.		
	Total	100%	60 Hr

- 1. Cell biology De Roberties and DeRoberties.
- 2. Cell and Molecular biology Shieler and Bianchi.
- 3. Cell biology (1991) David E.Sadva (Johnes & Barrette, C. H Best & B.T.Taylor. Biochemistry –West et al.
- 4. Introduction to Biological membranes (2nd edn 1988) M K Jain, John Wiley & Sons, NY.
- 5. Comprehensive introduction to membrane biochemistry (1987) by D B Datta.
- 6. Biological membranes: Their structure and function (2 nd edn 1980) Harrison R.
- 7. Text Book of Medical Physiology (10th edn 2001) by A G Guyton and Hall J E. Harcourt, Asia.
- 8. Review of Medical Physiology (12th ed, 1985) Ganong W F lange Medical Pub. Cell biology Karp et al.

a. Course Name: Lab 1-Biochemical Analysis

b. Course Code: 11203112

c. Prerequisite: Basic Knowledge about properties of biomolecules

d. Rationale: The "Biochemical analysis lab" is vital as it offers hands-on experience, reinforcing theoretical knowledge by applying basic biochemical concepts, fostering practical skills essential for life sciences disciplines.

e. Course Learning Objective:

CLOBJ 1	Identify and describe different types of chemical reactions of biomolecules.
CLOBJ 2	Apply different biochemical properties of biomolecules in their separation
	and applications.
CLOBJ 3	Analyse and apply different biochemical techniques to understand their
	properties.
CLOBJ 4	To study about variations in properties of biomolecules based on functional
	groups and side chains.

f. Course Learning Outcomes:

CLO 1	Illustrating how to standardize various biomolecules
CLO 2	Assessing various techniques adopted for separation of biomolecules.
CLO 3	Analyze separation of protein by electrophoresis.
CLO 4	Determining types carbohydrates by paper chromatography

g. Teaching & Examination Scheme:

Teaching Scheme						Evaluation	Scheme		
]	Internal Evaluation ESE				
L	T	P	C	MSE	CE	P	Theory	P	Total
	-	4	2	-	20	20	-	60	100

h. Experiment List:

Exp.	Name of the Experiment
No.	
1	General reactions of carbohydrates. Specific reactions of different sugars: Ribose, Glucose,
	Fructose, Galactose, Sucrose, Maltose, Lactose, Starch and Glycogen.
2	General reactions of proteins and Amino acids.
3	General reactions of lipids and Cholesterol.
4	Isolation and estimation of cholesterol from Zak's method.
5	Isolation and estimation of glycogen/starch
6	Estimation of Fructose in Fruit juice.
7	Estimation of proteins in biological samples: a.)Biuret method b) Folin-lowry method c.)UV
	method, d.)Bradford dye binding method.
8	Titration curve of amino acids and calculation of pk and pi values.
9	Estimation of amino acids by formal titration.
10	Estimation of amino acid by ninhydrin method.
11	Estimation of tyrosine by Millions method.
12	Estimation of praline by Colorimetric method.
13	Identification of N-Terminal group of proteins by Sanger's method
14	Preparation of Casein from milk.
15	Crystallization of egg albumin.

- 1. J. Jayaraman, Laboratory Manual in Biochemistry. New Age International Pvt Ltd Publishers. 2011 (Paperback).
- 2. S. Sadasivam, A. Manickam, Biochemical Methods. New age publishers.
- 3. .S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry.
- 4. Alpha Science International, Ltd. 2 edition, 2005.
- 5. Harold Varley, Practical Clinical Biochemistry, CBS.edition, 2006.
- 6. Hans Bisswanger, Practical Enzymology. Wiley VCH. 2nd Edition, 2011.
- 7. Enzyme Assays: A Practical Approach (Practical Approach Series).
- 8. Oxford University Press, U.S.A. 2 edition, 2002

a. Course Name: Intermediary Metabolism

b. Course Code: 11203155

c. Prerequisite: Basic knowledge in chemistry of biomolecules with their properties.

d. Rationale: This course intends to provide a basic understanding of the biochemical reactions of molecules, Role of enzymes as key elements that govern the biochemical transformations, break-down and synthesis of various biomolecules and the turnover of carbohydrates, proteins, lipids and nucleic acids.

e. Course Learning Objective:

CLOBJ 1	Discuss the different principles of metabolism in accordance with
	bioenergetics.
CLOBJ 2	Differentiate how various organs control metabolism.
CLOBJ 3	Explain homeostasis of different metabolic pathways like anaplerosis.

f. Course Learning Outcomes:

CLO 1	Understand the concepts of carbohydrate metabolism and its regulation.			
CLO 2	Explain glucose homeostasis (pathways and hormonal regulation). Discuss			
	Krebs cycle, electron transport, and the pentose phosphate pathway.			
CLO 3	Discuss the overall concept of cellular metabolism – anabolic and catabolic			
	pathways, energy storage and release.			

g. Teaching & Examination Scheme:

Teaching Scheme					Evaluation	Scheme			
]	Internal Evaluation ESE				
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I Carbohydrate Metabolism: Glycolysis and Fermentation. Different forms of fermentation. Pasteur effect. Control of glycolysis in muscle. Metabolism of fructose, galactose and mannose. Reactions of TCA cycle. Anaplerotic reactions. Amphibolic nature Energy yields and central	18%	11
	importance of the pathway. The Coricycle. Gluconeogenesis.		
2	UNIT-II Glucose-alanine cycle. Lactose synthesis. Glycoprotein synthesis. Hexose monophosphate shunt. Uronic acid pathway. Amino sugar pathway. Glycogen metabolism. Breakdown and synthesis of glycogen. Control of glycogen metabolism. Mechanism of oxidative phosphorylation: Electron transport system, Organization of electron carriers and enzymes in mitochondria, Inhibitors of electron transport system, Mechanism of oxidative phosphorylation – various theories, uncouplers of oxidative phosphorylation, Microsomal electron transport.	22%	14
3	Lipid Metabolism: Fatty acid oxidation, role of carnitine,metabolism of triacyl Glycerophospholipids and glycolipids. Biosynthesis of fatty acids, Regulation of fattyacid metabolism. Biosynthesis of cholesterol and its regulation. Ketone bodies metabolism, Archidonate metabolism – synthesis of prostaglandins, prostacyclins, thromboxanes and leukotrienes. Amino acids metabolism: General modes of amino acid catabolism, decarboxylation, transamination, oxidative deamination and other mechanisms, Role of pyridoxal phosphate in amino acid		12
4	metabolism. Urea cycle and its regulation.		
4	UNIT-IV	17%	11

	Total	100%	60 hr
	Catabolism of purine and pyrimidines		
	Biosynthesis of deoxyribonucleotides and its control.		
	regulation. Salvage pathways of nucleic acid biosynthesis.		
	purines and its regulation. Biosynthesis of pyrimidines and its		
	Biogenic amines.Nucleic Acid Metabolism: Biosynthesis of		
	regulation.Biosynthesis of Biogenic amines. Importance of		
	Biosynthesis and degradation of heme and its		
5	UNIT-V	21%	12
	Phenylalanine, Threonine, Tryptophan and Valine.		
	Histidine, Isoleucine, Leucine, Lysine, Methionine,		
	Proline.Biosynthesis and degradation of Essential amino acids:		
	Asparagine, Aspartate, Glutamate, Glutamine and		
	acids:Alanine, Cysteine, Glycine, Serine, Tyrosine,		
	Biosynthesis and degradation of Non Essential amino		

- 1. Principles of Biochemistry. –A.L.Lehninger (CBS Publishers).
- 2. Biochemistry Lubert Stryer (5 th edition).
- 3. Principles of Biochemistry General aspects Smith et al., (7 th edition)
- 4. Harper's Review of Biochemistry Martin et al., (Lange).
- 5. Text book of Biochemistry with Clinical correlation –Thomas M.Devlin; John Weiley)(2 nd edition).
- 6. Text book of Biochemistry West et al.,(1966)(Mac Milan:)
- 7. Biochemistry –Voet and Voet

a. Course Name: Plant Biochemstry

b. Course Code: 11203156

c. Prerequisite: Knowledge about plant system, plant hormones and metabolism of plants.

d. Rationale: This course provides insights into the primary metabolic pathways occurring in plants, the types of plant metabolites and the industrial potential of those metabolites and the role of hormones in plant growth.

e. Course Learning Objective:

CLOBJ 1	To gain knowledge about primary and secondary metabolites of plants.	
CLOBJ 2	Illustrate different metabolic pathways of plants.	
CLOBJ 3	Assess role and functions of different plant hormones and their effects on growth.	
	B. O. 11 (22)	

f. Course Learning Outcomes:

CLO 1	Annotating the physiological roles of plant cell.
CLO 2	Elaborate the Photosynthesis processes in plants.
CLO 3	Compare the functions of various hormones in plants.

g. Teaching & Examination Scheme:

Teaching Scheme					Evaluation	Scheme			
				1	Internal Evaluation ESE			;	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	18%	12
	Structure and functions of plant cell (including cell wall,		
	plasmodesmata, meristematic cells, vacuoles, secretary		
	systems and root quiescent zone) organization as tissues,		
	Isolation of cell organelles, absorption, adsorption and		
	transport of water and ions in plants. Evapotranspiration.		
	Antioxidative defence system in plants reactive oxygen		
	species and their generation, enzymic and non-enzymic		
	components of antioxidative defence mechanism.		
2	UNIT-II	22%	13
	Photosynthesis Photosynthetic apparatus, pigments of		
	photosynthesis, role of carotenoids, photosystems I and		
	II, their location; Hill reaction, photosynthetic electron		
	transport and generation of NADPH & ATP, cyclic and		
	non-cyclic photophosphorylations, complexes		
	associated with thylakoid membranes; light harvesting		
	complexes, path of carbon in photosynthesis C3 and C4		
	pathway of carbon reduction and its regulation,		
	Photorespiration.		
3	UNIT-III	18%	12
	Plant hormones-structure, functions and mechanism of		
	actionof plant hormones such as auxins, cytokinins,		
	abscisic acid,ethylene and gibberallins. Brassicosterols,		
	Jasmonales and other peptide like plant hormones.		
	Photochemical and hormonal control in plants.		
	Biosynthesis, storage, breakdown and transport;		
	physiological effects and mechanisms of action.		
4	UNIT-IV	22%	13

	Total	100%	60 Hr
	compounds, regulation of nitrate assimilation.		
	nitrite reductase, incorporation of ammonia into organic		
	Nitrate assimilation, structural features of nitrate and		
	regulation. Hydrogen uptake and bacterial hydrogenases.		
	action of nitrogenase. Structure of 'NIF' genes and its		
	complex,electron transport chain and mechanism of		
	Nitrogen Metabolism: Nitrogen fixation, nitrogenase		
5	UNIT-V	20%	10
	tolerance.		
	on plant growth and metabolism, criteria of stress		
	pathogenesis, heavy metals, radiations and their impact		
	salinity, water stress, heat, chilling, anaerobiosis,		
	Stress metabolism in plants Environmental stresses,		
	nicotine, functions of alkaloids, cell wall components.		
	pigments, phytochrome, waxes, alkaloids, biosynthesis of		
	Terpenes (classification, biosynthesis), lignin, tannins,		
	commercialization of secondary metabolites by humans.		
	in plant secondary metabolites, and their role, and		
	Special features of secondary plant metabolism, diversity		

- 1. Plant Biochemistry (James Bonner and J.R. Varner)
- 2. Introduction to plant Biochemistry (Goodwin)
- 3. Plant physiology (Salisbery)
- 4. Plant Biochemistry and Molecular Biology (P.J Lea and R.G.Heagood)
- Handbook of photosynthesis (ed) Mohammad Pe sarakle, Marcel Dekkar, I nc. NY. Basel. Hong Kong 1997.
- 6. Introduction to plant biochemistry (1983) T W Goodwin and E I Mercer. Pergaman Press, Oxford, NY, Toronto, Sydney, Paris, Frankful.
- 7. Biochemistry of energy utilization in plants D T dennis Blackie, Glasgow and London 1987.
- 8. Plant Biochemistry by P M Dey and J B Harborne. Harcourt Asia PTE Ltd., Singapore

a. Course Name: Microbial Biochemistry

b. Course Code: 11203157

c. Prerequisite: Basic knowledge of microorganism and microbial techniques.

d. Rationale: Microbial biochemistry provides insights into the basic biological processes that sustain life. Microorganisms often serve as model systems for studying biochemical pathways in higher organisms.

e. Course Learning Objective:

CLOBJ 1	Discuss the different biochemical pathways in microbes.
CLOBJ 2	Differentiate how various microbes are cultivated and used.
CLOBJ 3	Explain applications of microbes in learning metabolism.

f. Course Learning Outcomes:

CLO 1	Understand the concepts of carbohydrate metabolism in microbes.	
CLO 2	Explain the cultivation of microbes.	
CLO 3	Discuss sterilisation and disinfection processes for microbes.	

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
				Internal Evaluation			ESE		
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	21%	13
	Microbial biochemistry: Outlines of Bergey's manual of		
	classification Gram positive and gram negative bacteria.		
	General characteristics of actinomycetes, rickettsia,		
	mycoplasms, spirochetes, fungi. Ultrastructure of bacterium,		
	variant and invariant components of Bacterial cell wall, cell		
	membrane, capsule, cyst, external appendages, cytoplasmic		
	inclusions, nuclear material, ribosomes, Plasmids and		
	endospore. Staining techniques-Endospore and Gram's		
	staining.		
2	UNIT-II	22%	14
	General methods of isolation and cultivation of bacteria.		
	Sterilization methods. Bacterial growth. Phases of growth and		
	kinetics. Diauxic growth. Synchronous growth, chemostatic		
	cultures. Continuous cultivation of microbes. Microscopy:		
	Brightfield microscopy, Darkfield microscopy, fluorescence		
	microscopy, phase contrast microscopy, transmission electron		
	microscopy, scanning electron microscopy, Applications of		
	Microscopy.		
3	UNIT-III	21%	13
	Nutritional requirements in microorganisms: Modes of		
	nutrition - phototrophy, chemotrophy, methylotrphy,		
	organotrophy, mixotrophy, and saprophytic, symbiotic and		
	parasitic mode of nutrition. Control of microorganisms:		
	Fundamentals of control by physical agents control by		
	chemical agents, antibiotics and other chemotherapeutic		
	agents. Role of microorganisms in food spoilage, food borne		
	infections, sewage (domestic and industrial) disposal.		
4	UNIT-IV	18%	10
	Virology: Classification of viruses, Composition and structure		

	Total	100%	60 hr
	curl virus. General features of SARS and Bird flu.		
	TMV, CaMV, Peanut clump virus and Tomato yellow leaf		
	SV 40, Retrovirus and HIV/AIDS, Hepatitis. Plant viruses –		
	features and outlines of adenovirus, poliovirus, herpes virus,		
	Biosynthesis Eukaryotic viruses: Animal viruses, General		
5	UNIT-V	18%	10
	Lysogenic cycle in lambda phage		
	Bacteriophage life cycles Qβ, M13 and fx174. Llytic and		
	phages; Assay of TMV; Plaque assay for Bacteriophage.		
	methods of virus isolation with examples of TMV and T		
	of viruses, virusoids, prions, Virus-host interactions. General		

- 1. Brock Biology of Microorganisms (14th Edition) by Michael T. Madigan, John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl, and Thomas Brock.
- 2. Microbiology: An Introduction (13th Edition) by Gerard J. Tortora, Berdell R. Funke, and Christine L. Case.
- 3. Prescott's Microbiology (9th Edition) by Joanne Willey, Linda Sherwood, and Christopher J. Woolverton.
- 4. Bailey & Scott's Diagnostic Microbiology (13th Edition) by Patricia Tille.
- 5. Jawetz, Melnick, & Adelberg's Medical Microbiology (26th Edition) by Michael V. Potter and Nancy M. Drobenbeck.
- 6. Sherris Medical Microbiology (6th Edition) by Kenneth J. Ryan and C. George Ray

a. Course Name: Lab 1-Enzymology

b. Course Code: 11203159

c. Prerequisite: Basic knowledge of enzymes

d. Rationale: To develop familiarity with biochemical laboratory techniques, and to introduce students to various practical aspects of enzymology and their correlation in disease conditions.

e. Course Learning Objective:

CLOBJ 1	To gain knowledge on enzymology in the aspects of isolation and				
	purification, kinetics as well as native PAGE analysis.				
CLOBJ 2	Analyse the kinetics of enzyme catalysis and learn the basics of isolation				
	and purification of enzymes.				
CLOBJ 3	Understand the concepts of isoenzyme analysis and inhibitory mechanisms				
	of enzyme activity				

f. Course Learning Outcomes:

CLO 1	Learn kinetics of enzyme catalyzed reactions and enzyme inhibitory and
	regulatory processes.
CLO 2	Able to perform immobilization of enzymes.
CLO 3	Utilize knowledge of enzymes and wide applications of them to improve
	medicines and human health care system.

g. Teaching & Examination Scheme:

Teaching Scheme			Evaluation Scheme						
				Internal Evaluation			ESE		
L	Т	P	C	MSE	CE	P	Theory	P	Total
	-	4	2	-	20	20	-	60	100

h. Experiment List:

Exp.	Name of the Experiment
No.	
1	Amylase from Saliva.
2	Urease from Horsegram
3	Acid phosphatase from potato
4	Alkaline phosphatase from serum
5	SDH from liver
6	Trypsin.
7	Invertase.
8	LDH from Serum (Isoenzymes).
9	Acetylcholine esterase activity.
10	Purification and study of enzyme kinetics with respect to substrate and enzyme
11	Concentrations pH, temperature, activators and inhibitors and immobilization

- 1. J. Jayaraman, Laboratory Manual in Biochemistry. New Age International Pvt Ltd Publishers. 2011 (Paperback).
- 2. S. Sadasivam, A. Manickam, Biochemical Methods. New age publishers.
- 3. .S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry.
- 4. Alpha Science International, Ltd. 2 edition, 2005.
- 5. Harold Varley, Practical Clinical Biochemistry, CBS.edition, 2006.
- 6. Hans Bisswanger, Practical Enzymology. Wiley VCH. 2nd Edition, 2011.
- 7. Enzyme Assays: A Practical Approach (Practical Approach Series). Oxford University Press, U.S.A. 2 edition, 2002

a. Course Name: Lab 2-Plant Biochemical Analysis

b. Course Code: 11203160

c. Prerequisite: Basic Knowledge about planta and phytochemicals

d. Rationale: The main objective of this paper is to learn about different phytochemicals their function and extraction processes.

e. Course Learning Objective:

CLOBJ 1	Outlining about physiology of plants.
CLOBJ 2	Inferring Knowledge about different phytochemicals and their properties.
CLOBJ 3	Analysis, identification and separation of phytochemicals.

f. Course Learning Outcomes:

CLO 1	Associating a basic understanding of biochemical events associated with
	structural arrangement of plant cell and organization
CLO 2	Analyze and understand the biochemistry of photosynthetic process and its
	relation to man and its environment.
CLO 3	Predicting knowledge about the importance of secondary metabolites and its
	industrial applications.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
]	Internal Evaluation			ESE	
L	T	P	C	MSE	CE	P	Theory	P	Total
	-	4	2	-	20	20	-	60	100

h. Experiment List:

Exp.	Name of the Experiment						
No.							
1	Estimation of plant pigments – Carotenoids, Chlorophyll						
2	Estimation of total phenols in plants.						
3	Estimation of Flavonols and Tannins in plants						
4	Estimation of Capasicin by spectrophotometric method.						
5	Estimation of reduced ascorbic acid by DCPIP method.						
6	Estimation of total Ascorbic acid by DNPH method.						
7	Estimation of thymine by colorimetry, Fluorimetry						
8	Estimation of riboflavin by fluorimetry						
9	Estimation of niacin by cyanogen bromide method.						
10	Estimation of available lysine in fruits						
11	Estimation of magnesium, copper, iron, calcium, Phosphorus in food.						
12	Estimation of protein in plant seeds by micro Kjeldahl method.						
13	Estimation of fat in plant seeds (Gravimetry).						
14	Determination of saponification value in seed oil.						
15	Determination of iodine value in oil						

i. Text Book and Reference Book:

- J. Jayaraman, Laboratory Manual in Biochemistry. New Age International Pvt Ltd Publishers. 2011 (Paperback).
- 2. S. Sadasivam, A. Manickam, Biochemical Methods. New age publishers.
- 3. .S. K. Sawhney, Randhir Singh, Introductory Practical Biochemistry.
- 4. Harold Varley, Practical Clinical Biochemistry, CBS.edition, 2006.
- 5. Hans Bisswanger, Practical Enzymology. Wiley VCH. 2nd Edition, 2011.
- 6. Enzyme Assays: A Practical Approach (Practical Approach Series) Oxford University Press, U.S.A. 2 edition, 2002.

a. Course Name: Nutritional Biochemistry and analytical methods

b. Course Code: 11203180

c. Prerequisite: Inclination to learn about nutrients, diseases which occurs due to deficiencies and analytical techniques to learn nutrient analysis.

d. Rationale: The main objective of this course is to introduce about Dietary requirements and energy content in foods needed for human body.

e. Course Learning Objective:

CLOBJ 1	Finding of macro and micronutrients and their effects.				
CLOBJ 2	Knowing concept of growth and Nitrogen balance.				
CLOBJ 3	Inferring Different techniques used in detection of diseases and organ perfusion techniques.				
CLOBJ 4	Appraising knowldge of radioactivity and its potential applications.				

f. Course Learning Outcomes:

CLO 1	Understand the basic national value of the foods and their calorific value in
	life.
CLO 2	Assess Nutritive value of the fats, proteins and carbohydrates and their
	calorific values provides the diet regulations.
CLO 3	Integarting experimental approaches like estimations and isolation of these
	macromolecules provides skill development.
CLO 4	Measuring how this radioactivity useful in diagnostic techniques.

g. Teaching & Examination Scheme:

	Teachi	aching Scheme				Evaluation	Scheme		
				Internal Evaluation			ESE	C	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT-I	23%	13
	Nutritional Biochemistry: Calorific values of		
	carbohydrates, fats and proteins, specific dynamic action.		
	Measurement of energy expenditure direct and indirect		
	colorimetry,respiratory quotient and BMR. Factors		
	effecting BMR.Essential and nonessential amino acids.		
	Nitrogen balance, Determination of biological value of		
	proteins, Kwashiorkor and Merasmus.		
2	UNIT-II	25%	15
	Essential fatty acids and phospholipids in nutrition.		
	Water soluble and fat soluble vitamins. Requirement,		
	Sources and deficiency symptoms. Macro and trace		
	elements in nutrition and their biochemical role,		
	recommended allowances, sources, deficiency		
	symptoms. Special aspects of nutrition for the pregnant,		
	lactating women, infants, children, Adults and old age.		
	Obesity, Importance of nutrition under stress conditions.		
3	UNIT-III	27%	17
	Experimental approaches in study of metabolism -		
	Metabolic inhibition, growth studies and Biochemical		
	genetics, isotopic biochemistry, isolated organs, cells		
	and sub cellular organelles Organ perfusion. Use of		
	experimental animals, tissue slices, homogenates and		
	mutant organisms in the study of intermediary		
	metabolism.Centrifugation Techniques: Basic		
	principles of centrifugation, preparative		
	centrifugation differential, rate zonal, isopycnic and		
	equilibrium isodensity centrifugation,		
	analysis of subcellular fractions, assessment of		

	homogeneity. Analytical ultracentrifuge and its		
	applications.Flow cytometry.		
4	UNIT-IV	25%	15
	Radioactivity: Stable and radio isotopes, Nature of		
	radioactivity-half life, decay constant and units of		
	radioactivity. Detection and measurement of radio		
	activitytechniques-G.M. counters, proportional counter,		
	scintillation counters and auto radiography. Radiation		
	dose units,Roentgen, REP, REM, maximum permissible		
	dose, lethal dose and tolerance doses. Evaluation of		
	exposed doses-dosimetry and dosimeters. Biological		
	effects of radiation, Application of radioisotopes in		
	biochemical sciences.		
	Total	100%	60 Hr

i. Text Book and Reference Book:

- 1. Nutrition: An integrated approach (3 rd edn. 1984) R L Pike and M L Brown, Wiley and Sons Inc. NY.
- 2. Text Book of Biochemistry and Human Biology G P Talwar, Prentice Hall.
- 3. Mechanism and Theory in Food Chemistry (1996) DWS Wong, CBS, New Delhi.
- 4. Text Book of Human Nutrition (1996) M S Bamji N Pralhad Rao and V Reddy, Oxford & IBH Publishers.
- 5. Nutritional Biochemistry and Metabolism Linten.
- 6. Principles of Food Science –I (Food Chemistry) Fennemona D R.
- 7. Human Nutrition and Dietetics (8 th Ed. 1982) by Davidson and Passmore ELBS.
- 8. Modern Nutrition in Health and Diseases (7 th ed 1988) by Maurice E Skills and VR Young K M Varghese Co. Bombay.
- 9. The tools of Biochemistry Terrace.E.Cooper (John Willey).

a. Course Name: Ecology and Environmental Biochemistry

b. Course Code: 11203181

c. Prerequisite: Basic knowledge of environment and ecological aspects and its impact on population.

d. Rationale: The objectives of the course is to introduce and sensitize all students to the issue of ecology, environment and sustainability. To incorporate sustainability and a sensitivity to ecology and environment and their impact.

e. Course Learning Objective:

CLOBJ 1 Infer complex relationships between natural and human system			
CLOBJ 2	Knowing about ecosystem		
CLOBJ 3	Illustrating the ecological knowledge and its consequences.		

f. Course Learning Outcomes:

CLO 1	Understand the concept, types, development and functions of various
	ecosystems and their communication
CLO 2	Discuss various environmental factors governing these ecosystems are also
	clearly implicated.
CLO 3	Knowledge can help to form strategies for conservation and sustainable
	management under the given legislative measures.

g. Teaching & Examination Scheme:

Teaching Scheme						Evaluation	Scheme		
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	23%	13
	Ecology as an inter-disciplinary science. Origin of life		
	and speciation. Human Ecology and Settlement.		
	Ecosystem Structure and functions: Structures -		
	Biotic and Abiotic components. Functions – Energy		
	flow in ecosystems, energy flow models, food chains		
	and food webs. Biogeochemical cycles, Ecological		
	succession. Species diversjity, Concept of ecotone,		
	edge effects, ecological habitats and niche.		
	Ecosystem stability and factors affecting stability.		
	Ecosystem services. Basis of Ecosystem classification.		
	Types of Ecosystem: Desert (hot and cold), forest,		
	rangeland, wetlands, lotic, lentic, estuarine		
	(mangrove), Oceanic. Biomes: Concept, classification		
	and distribution. Characteristics of different biomes:		
	Tundra, Taiga, Grassland, Deciduous forest biome,		
	Highland Icy Alpine Biome, Chapparal, Savanna,		
	Tropical Rain forest		
2	UNIT 2	25%	15
	Population ecology: Characteristics of population,		
	concept of carrying capacity, population growth and		
	regulations. Population fluctuations, dispersion and		
	metapopulation. Concept of 'r' and 'k' species.		
	Keystone species. Community ecology: Definition,		
	community concept, types and interaction- predation,		
	herbivory, parasitism and allelopathy. Biological		
	invasions. Biodiversity and its conservation: Definition,		
	types, importance of biodiversity and threats to		
	biodiversity. Concept and basis of identification of		

	Protected areas and Sacred groves in India. Concepts of		
	gene pool, biopiracy and bio-prospecting. Concept of		
	restoration ecology. Extinct, Rare, Endangered and		
	Threatened flora and fauna of India.		
3	UNIT 3	27%	17
	Environmental Chemistry Fundamentals of		
	Environmental Chemistry: Classification of elements,		
	Stoichiometry, Gibbs' energy, chemical potential,		
	chemical kinetics, chemical equilibria, solubility of gases		
	in water, the carbonate system, unsaturated and saturated		
	hydrocarbons, radioisotopes. Composition of air.		
	Particles, ions and radicals in the atmosphere. Chemical		
	speciation. Chemical processes in the formation of		
	inorganic and organic particulate matters,		
	thermochemical and photochemical reactions in		
	the atmosphere, Oxygen and Ozone chemistry.		
	Photochemical smog. Hydrological cycle. Water as a		
	universal solvent. Concept of DO, BOD and COD.		
	Sedimentation, coagulation, flocculation, filtration, pH		
	and Redox potential (Eh). Inorganic and organic		
	components of soils. Biogeochemical cycles – nitrogen,		
	carbon, phosphorus and sulphur. Toxic chemicals:		
	Pesticides and their classification and effects.		
	Biochemical aspects of heavy metals (Hg, Cd, Pb, Cr) and		
	metalloids (As, Se). CO, O3, PAN, VOC and POP.		
	Carcinogens in the air.		
4	UNIT 4	25%	15
4		25%	15
4	UNIT 4	25%	15

Total	100%	60 Hr
FTIR, GC-MS, SEM, TEM.s		
AES, ICP-MS), Electrophoresis, XRF, XRD, NMR,		
photometry, Spectrophotometry (UV-VIS, AAS, ICP-		

i. Text Book and Reference Book:

- Environmental Engineering By Howard S. Peavy, Donald R. Rowe, George Tchobanoglous | McGraw-Hill
- 2. Environmental Biotechnology: Basic concepts and applications By Indu Shekar Thakur
- 3. Environmental Sciences By Daniel B Botkin & Edward A Keller | John Wiley & Sons
- 4. Environmental Studies By Benny Joseph | TMH publishers
- 5. A textbook of Environmnetal Science By Vidya Thakur
- 6. Environmental Biotechnology By S. K. Agarwal

a. Course Name: Genetics and Biostatistics

b. Course Code: 11203201

c. Prerequisite: Inclination to learn fundamentals of molecular biology, genetics and

statistics.

d. Rationale: Genetics is essential for comprehending the fundamental principles of life, advancing medical science, improving agriculture, and addressing various societal challenges. It empowers individuals to make informed decisions about their health, contributes to scientific advancements, and has far-reaching implications in diverse fields.

e. Course Learning Objective:

CLOBJ 1	Understand the basic principles of genetics, including Mendelian
	inheritance, chromosome structure, and gene regulation.
CLOBJ 2	Describe the mechanisms of genetic variation, including mutation,
	recombination, and gene flow.
CLOBJ 3	Explain the principles of population genetics, including Hardy-Weinberg
	equilibrium, genetic drift, and natural selection.
CLOBJ 4	Discuss the inheritance patterns and molecular basis of human genetic
	disorders, including single-gene disorders, chromosomal disorders, and
	complex traits.

f. Course Learning Outcomes:

CLO 1	Determine methodology and techniques for evolutionary genetics study
CLO 2	Elobarate the Concepts of genetic engineering for new gene construct.
CLO 3	Discuss the construction of vector
CLO 4	Conduct the experiments basic statistical analysis of data

g. Teaching & Examination Scheme:

Teaching Scheme]	Evaluation	Scheme		
				Internal Evaluation			ESE		
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester

Evaluation, **CE**- Continuous Evaluation, **ESE-** End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	22%	12
	Mendelian Inheritance: Law of Dominance, Law of		
	Segregation and Law of Independence assortment and		
	deviations of Mendelian inheritance. Extra		
	chromosomal inheritance, inheritance of Mitochondrial		
	and Chloroplast. Sex-linked inheritance. Polygenic		
	inheritance. Identification of Nucleic acids as genetic		
	material. Genome Organization: in Viroids, Viruses,		
	Prokaryotic and Eukaryotic chromosomes. Histones		
	and non-Histones type DNA binding proteins. C-value		
	paradox. Plasmids, Transposons		
2	UNIT 2	17%	10
	Concepts of Cistrons, Recons and Mutons. Single copy		
	genes, unique sequences, repetitive sequences and		
	tandem genecluster-Histone genes, Immunoglobuline		
	genes. Mutations Different types of mutations and		
	nature of mutagens. Detection and isolation of mutants.		
	Mechanism of mutation. Benger's fine structure of rII		
	locus. Ames test. Site directed mutagenesis. Eugenics		
	and Euphonics		
3	UNIT 3	22%	12
	Cell growth and Cell division: Mitosis and		
	Meiosis. Cells cycle parameters, specific events in		
	the cell cycle, control of cell cycle, Internal and		
	external mitotic inducers. Cell death – Apoptosis,		
	Protooncogenes and Oncogenes.		
	Gene transfer mechanisms: Transformation,		
	Conjugation, and Transduction - Generalized, abortive		
	and specialized transduction. Mechanism of general		
	recombination, cross over, Site specific recombination		

4	UNIT 4	17%	10
	Elements of gene mapping: Gene linkage. Mapping by		
	recombination analysis. Multiple crossover and		
	interference. The circular chromosome and mapping by		
	conjugation. Tetrad analysis and complementation		
	analysis. Mapping by transformation and transduction.		
	Map units and cytological maps of eukaryotic		
	chromosomes. Somatic cell genetics.		
5	UNIT 5	22%	16
	Introduction to Biostatistics, Population and Sample		
	Scope of Biostatistics, Population and Sample, types		
	of data, Collection of data; Primary & Secondary data,		
	Classification and Graphical representation of		
	Statistical data. Concept of Population in Biostatistics,		
	Sampling Methods, confidence level, critical region,		
	testing of hypothesis and standard error, large sample		
	test and small sample test.		
	Descriptive Statistics and Presentation, classification,		
	graphical presentation, Measures of Central Tendency,		
	Measures of Dispersion. Regression and Correlation		
	Introduction to Regression, Linear Regression, Concept		
	and types of correlation, Computation of Correlation		
	Coefficients		
	Total	100%	60 Hr

i. Text Books and Reference Books:

- 1. Principle of genetics-Gardner
- 2. Molecular Cell Biology-Lodish
- 3. Principles of Genetics=Edmund W Sinnott; Mcgeaw hill book company, Newyork 1950.; V Edition
- 4. Essentials of Genetics-Klugg and Cummings
- 5. Genetics-B.D .Singh
- 6. Cell and Molecular Biology-Gerald Karp

a. Course Name: Immunologyb. Course Code: 11203203

c. Prerequisite: Inclination to learn basic understanding of immunology concepts.

d. Rationale: Immunology is vital for healthcare professionals, researchers, and anyone interested in understanding the body's defense mechanisms. It has direct applications in medicine, disease prevention, and the development of innovative therapeutic approaches, making it a crucial field of study for those interested in biology, medicine, and public health.

e. Course Learning Objective:

CLOBJ 1	Understand the basic principles of immunology, including the structure
	and function of the immune system and its components.
CLOBJ 2	Describe the cellular and molecular mechanisms of innate immunity and
	adaptive immunity.
CLOBJ 3	Explain the processes of antigen recognition, antigen presentation, and
	lymphocyte activation and differentiation.
CLOBJ 4	Describe the mechanisms of antibody production, including B cell
	development, antibody structure, and antibody-mediated immune
	responses.

f. Course Learning Outcomes:

CLO 1	Compare innate and adaptive immunity
CLO 2	Build the model of Immunoglobulins
CLO 3	Elucidate the reasons for immunization significance of transplant procedures
CLO 4	Understand the role of the immune system in host defense against pathogens

g. Teaching & Examination Scheme:

Teaching Scheme					Evaluation	Scheme			
				Inte	Internal Evaluation			2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	18%	11
	Biological aspects of immunity: Innate and adaptive		
	immunity, cell mediate and humoral immunity. Primary and		
	secondary lymphoid organs. Specificity, self and non-self-		
	recognition. Antigen-Antibody: Haptens and determinants		
	epitopes and paratopes. Nature of Ag and Ab, heterogeneity,		
	isolation and purification. Structure and enzymatic		
	fragmentation of immunoglobulin. Classification of		
	immunoglobulins, types and biological activities of		
	immunoglobulins. Generation of antibody diversity.		
	Theories of immune response.		
2	UNIT 2	22%	13
	Immune Response: Primary and secondary immune		
	response cells and accessory cell. Subsets of T&B Cells,		
	T&B cell receptors, antigen processing and presentation.		
	Cytokines and co-stimulatory molecules- Lymphokines,		
	interleukins. Complement: Complement components,		
	classical pathway Nature and alternative pathway.		
	Biological consequences of complement		
	adtivation. Hypersensitivity: Class fixation, hypersensitivity		
	types, anaphylactic, antibody-dependent cytotoxic, immune		
	complex mediated, cell mediated and stimulatory		
	hypersensitive reactions.		
3	UNIT 3	18%	11
	Major Histocompability Complex: Structure of MHC I and		
	MCH II genes. MCH in mice and HLA in man-fine structure		
	and functions Role of MCH in immune response. MCH in		
	Transplantation. Immuno Deficiencies: Introduction,		
	primary and secondary 18% 11 deficiencies, T - cell and B		

	cell combined immunodeficiencies, complement system		
	deficiency, acquired Immuno-Deficiency syndrome.		
4	UNIT 4	22%	13
	Autoimmunity and Immuno Suppression: Introduction,		
	autorecognition, and classes of Auto Immuno Diseases.		
	General mechanism of immuno-suppression, immune cells		
	specific immuno tolerance. Cytokine therapy.		
	Transplantation: Terminology, immunological basis of		
	transplantation, organ transplantation, mechanism of		
	rejection of transplants, prevention of graft rejection.		
	Immunological Techniques: Precipitation and		
	agglutination-lattice hypothesis, precipitin tests one- and		
	two-dimensional, single radial immunodiffusion,		
	immunoelectrophoresis, agglutination tests-Widal test,		
	VDRL test complement fixation test, Radioimmunoassay		
	and ELISA-principal methods and applications, FACS.		
5	UNIT 5	20%	12
	Hybridoma technique and monoclonal antibody production,		
	myeloma cell lines. Fusion methods, selection and screening		
	methods for positive hybrids, cloning methods. Purification		
	and characterization of monoclonal antibodies. Application		
	of monoclonal antibodies in biochemical research, in		
	clinical diagnosis and treatment. Production of Human		
	monoclonal antibodies and their applications. Vaccines-		
	Concept of immunization, routes of vaccination. Types of		
	vaccines-Whole organism (Attenuated and inactivated) and		
	Component vaccines (Synthetic Peptides, DNA vaccines,		
	Recombinant Vaccines, Subunit Vaccines).		
	Total	100%	60

i. Text Books and Reference Books:

- 1. .Immunology-Kuby
- 2. Textbook of Microbiology & Immunology-S.C.Parija; Reed Elsevier

a. Course Name: Molecular Biology-I

b. Course Code: 11203204

c. Prerequisite: foundation in genetics is essential, as molecular biology often involves the study of genes, DNA, and the processes of replication, transcription, and translation.

d. Rationale: Molecular biology is essential for advancing our understanding of life processes, contributing to medical breakthroughs, and addressing challenges in diverse fields. It serves as the foundation for numerous scientific and technological advancements with applications ranging from medicine and agriculture to environmental science and biotechnology

e. Course Learning Objective:

CLOBJ 1	Understand the fundamental principles of molecular biology, including the		
	structure and function of DNA, RNA, and proteins.		
CLOBJ 2	Explain the central dogma of molecular biology, detailing the processes of		
	DNA replication, transcription, and translation.		
CLOBJ 3	Demonstrate proficiency in basic molecular biology laboratory techniques,		
	such as DNA extraction, PCR (polymerase chain reaction), gel		
	electrophoresis, and DNA cloning.		
CLOBJ 4	Understand the mechanisms of genetic mutations, DNA repair, and the		
	role of genetic variation in disease.		

f. Course Learning Outcomes:

CLO 1	Relate the cell and molecular biology with its general concepts
CLO 2	Explain the storage of DNA
CLO 3	llustrate the structural organization of genes and the control of gene expression
CLO 4	Describe the protein structure and novel technologies for Protein technology

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester

valuation, CE- Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	22%	13
	DNA Replication: DNA Superhelicity, linking number,		
	topological properties and mechanism of action of		
	topoisomerases. Semiconservative replication, Experimental		
	proof for semiconservative replication, replication forks,		
	DNA polymerases of Prokaryotic and Eukaryotic.		
	Continuous and discontinuous synthesis, Evidence for		
	Okazaki model, RNA primers. Enzymes in replication-		
	Single-stranded DNA binding proteins (SSBS), Helicases,		
	DNA primases, DNA ligase.		
2	UNIT 2	20%	12
	Prokaryotic replication mechanism: Replication of E.coli,		
	rolling circle replication, Replication of \$\phi x174\$,		
	Bacteriophage M13, Negative strand(VSV), positive strand		
	(polio virus), retrovirus, DNA virus(SV-40, Adenovirus),		
	Eukaryotic DNA replication, Autonomous replicating		
	sequences (ARS).		
3	UNIT 3	18%	11
	Mitochondrial DNA replication, Termination and fidelity of		
	replication; Fusion of replicons and termination signals.		
	Telomers.		
	Repair of DNA: Direct reversal of damage, Excision repair,		
	Recombination repair, SOS response. Identification of		
	carcinogens. Inhibitors of DNA replication.		
4	UNIT 4	20%	12
	Transcription : Polynucleotidephosphorylase, RNA		
	polymerases, Structure of E.coli RNA polymerase,		
	Interaction between RNA polymerase and template. Chain		
	initiation, elongation and termination. Eukaryotic RNA		

	polymerases, Promoter and enhancer sequences. Inhibitors of transcription, Synthesis of different RNA molecules; synthesis of ribosomal RNA, 5S- r RNA and tRNA.		
5	UNIT 5	20%	12
	Maturation and processing of RNA: Methylation, cutting		
	and trimming of rRNA, capping polyadenylatin and splicing		
	of mRNA, catalytic RNA, group I and group II intron		
	splicing, spliceosmoses, trans-splicing, RNase P.		
	Total	100%	60 Hr

i. Text Books and Reference Books:

- 1. Molecular Biology-Robert Weaver
- Lehninger Principles of Biochemistry,-David L. Nelson, Michael M. Cox,; Publisher:
 W. H. Freeman; Fourth Edition
- 3. Molecular Biology of Cell-Bruce Albert
- 4. The Cellular & Molecular Biology-EDP De Robertis & EMF De Robertis
- 5. Molecular Biology of the Gene-J.D. Watson and H.H. Nancy

a. Course Name: Lab 1-Microbiology

b. Course Code: 11203205

c. Prerequisite: Basic Knowledge about Microorganisms.

d. Rationale: Microbial practical play a vital role in developing essential laboratory and analytical skills, fostering a deeper understanding of microorganisms, and preparing individuals for diverse careers in microbiology and related fields.

e. Course Learning Objective:

CLOBJ 1	Learn to culture and isolate microorganisms from various sources,
	including environmental samples, clinical specimens, and food samples.
CLOBJ 2	Understand the principles of microbial staining techniques, including Gram
	staining, acid-fast staining, and endospore staining.
CLOBJ 3	Learn to use basic microbiological equipment and laboratory instruments,
	including microscopes, incubators, autoclaves, and spectrophotometers.
CLOBJ 4	Practice data analysis and interpretation skills by recording and analyzing
	experimental results, including colony morphology, growth curves, and
	biochemical test outcomes.

f. Course Learning Outcomes:

CLO 1	Learn how to standardize various biomolecules.
CLO 2	Track various techniques adopted for separation of biomolecules.
CLO 3	Study different isolation techniques based on properties of amino acids.
CLO 4	Study Various properties of biomolecules based on composition

g. Teaching & Examination Scheme:

	Teachi	ing Sch	eme]	Evaluation	Scheme		
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
-	-	4	2	-	-	40	-	60	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester

Evaluation, CE- Continuous Evaluation, ESE- End Semester Examination

h. Experiment List:

Exp.	Name of the Experiment
No.	
1	Preparation of liquid and solid media for growth of microorganism
2	Isolation and maintenance of organisms by plating, streaking and serial dilution
	methods. Slant and stab cultures.
3	Isolation of pure cultures from soil and water.
4	Determination of growth curve of bacteria (E.coliand Pseudomonas)
5	Bacterial population count by turbidimetry determination method.
6	Bacterial staining by Gram's, Acid fast and spores.
7	Effect of pH on bacterial growth.
8	Assay of antibiotics and demonstration of antibiotic resistance.
9	Bacterial transformation.
10	One step growth curve of coliphage.
11	Determination of biological oxygen demand (BOD) of water

i. Text Books and reference books

- 1. Practical Microbiology -k.R.Aneja
- 2. Experimental Microbiology-Dubey and Maheshawari

a. Course Name: Lab 2-Molecular Biology

b. Course Code: 11203206

c. Prerequisite: Basic Knowledge about Genetics.

d. Rationale: Molecular biology practicals are integral to developing essential laboratory skills, fostering a deeper understanding of molecular processes, and preparing individuals for careers in research, biotechnology, medicine, and related fields.

e. Course Learning Objective:

CLOBJ 1	Learn to culture and isolate microorganisms from various sources,
	including environmental samples, clinical specimens, and food samples.
CLOBJ 2	Understand the principles of microbial staining techniques, including Gram
	staining, acid-fast staining, and endospore staining.
CLOBJ 3	Learn to use basic microbiological equipment and laboratory instruments,
	including microscopes, incubators, autoclaves, and spectrophotometers.
CLOBJ 4	Practice data analysis and interpretation skills by recording and analyzing
	experimental results, including colony morphology, growth curves, and
	biochemical test outcomes.

f. Course Learning Outcomes:

CLO 1	Learn how to isolate and estimate genetic material (DNA/RNA) from different
	organisms.
CLO 2	Track digested DNA on gel electrophoresis.
CLO 3	Study different isolation techniques for plasmid DNA isolation
CLO 4	Study conjugation, transfection and transformation.

g. Teaching & Examination Scheme:

	Teachi	ing Sch	eme			Evaluation	Scheme		
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
-	-	4	2	-	-	40	-	60	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester

Evaluation, CE- Continuous Evaluation, ESE- End Semester Examination

h. Experiment List:

Exp.	Name of the Experiment
No.	
1	Isolation of DNA from Bacterial, Plant and animal cells.
2	Estimation of DNA by Diphenylamine and spectrophotometric method.
3	Isolation of RNA from yeast cells.
4	Estimation of RNA by orcinol and spectrophotometric method.
5	Estimation of DNA and purity determination by UV absorption method.
6	Determination of melting temperature (Tm).
7	Separation of Restriction digested DNA fragments on agarose gel
	electrophoresis.
8	A Detection and differentiation of open circular, Linear and closed covalent
	circular (ccc) plasmid DNA by submarine gel electrophoresis.
9	Isolation of Plasmid DNA from E.coli HB.
10	Transformation of E.coli HB 101/JM 10 3 with ampicillin resistant plasmid PJA.
11	Transfection of M13 DNA into E.coli JM 103.
12	Isolation of phage M13; Isolation of single and double stranded M13 DNA.
13	Conjugation: Use of broad host range plasmid RF in demonstrating conjugal
	transfer of plasmid in Bacteria
14	Catabolite repression: Evidence of B-Galactosidase induction in presence of
	Lactose in E.coli lac strains

i. Text Books and reference books

- 1. 1.Fundamentals of Genetics by B D Singh
- 2. Principles of genetics by Eldon John Gardner
- 3. Genetics by V Rastogi

a. Course Name: Genomics and Proteomics

b. Course Code: 11202230

c. Prerequisite: Basic understanding of molecular biology and biomolecules.

d. Rationale: Genomics and Proteomics is essential for comprehending the fundamental principles of life, advancing and improving medical science, and addressing various societal challenges. It empowers individuals to make informed decisions about their health, contributes to scientific advancements, and has far-reaching implications in diverse fields.

e. Course Learning Objective:

CLOBJ 1	Understand the fundamental principles of genomics and proteomics, including
	the structure and function of genes, genomes, proteins, and their interaction
CLOBJ 2	Analyze genomic sequences to identify genes, regulatory elements, and
	genetic variations, including single nucleotide polymorphisms (SNPs),
	insertions, deletions, and structural variant
CLOBJ 3	Interpret genomic and proteomic data to elucidate biological processes,
	pathways, and networks involved in health and disease

f. Course Learning Outcomes:

CLO 1	Demonstrate a comprehensive understanding of the principles and techniques of
	genomics and proteomics
CLO 2	Evaluate the significance of genomic and proteomic findings in the context of
	human health.
CLO 3	Integrate genomic and proteomic information with other omics data, such as
	transcriptomics, metabolomics, and epigenomics

g. Teaching & Examination Scheme:

	Teachi	eaching Scheme Evaluation Scheme							
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L-Lectures; T-Tutorial; P-Practical; C-Credit; MSE-Mid-Semester

Evaluation, CE- Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1 Genomics	25%	15
	Structural organization of genome in Prokaryotes and		
	Eukaryotes; Organelle DNA-mitochondrial, chloroplast;		
	DNA Sequencing-principles and translation to large scale		
	projects; Recognition of coding and non-coding sequences		
	and gene annotation; Tools for genome analysis-RFLP,		
	DNA fingerprinting, RAPD, PCR, Linkage and Pedigree		
	analysis physical and genetic mapping.		
2	UNIT 2 Genome sequencing projects	25%	15
	Microbes, plants and animals; Accessing and retrieving		
	genome project information from web; Comparative		
	genomics, Identification and classification using molecular		
	markers-16S rRNA typing/sequencing, ESTs and SNPs		
3	UNIT 3 Proteomics	25%	15
	Protein analysis (includes measurement of concentration,		
	amino-acid composition, N-terminal sequencing); 2-D		
	electrophoresis of proteins; Microscale solution isoelectric		
	focusing; Peptide fingerprinting; LC/MS-MS for		
	identification of proteins and modified proteins; MALDI-		
	TOF; Protein-protein interactions, Yeast two hybrid system		
4	UNIT 4 Functional genomics and proteomics	25%	15
	Analysis of microarray data; Protein and peptide		
	microarray-based technology; PCR-directed protein in situ		
	arrays; Structural proteomics		

i. Text Book and Reference Book:

- 1. Genomes by T.A. Brown
- 2. Introduction to Genomics by Arthur M. Lesk
- 3. Genomics and Proteomics: Principles, Technologies, and Applications by Sandrine Hughes and Nicola Stanley-Wall
- 4. Genomics and Proteomics in Nutrition edited by Carolyn D. Berdanier, Judy L. Bolton, and Sivakanesan Dakshanamurthy
- 5. Proteomics: Methods and Protocols" edited by Richard J. Simpson
- 6. Principles of Proteomics" by Richard Twyman

a. Course Name: Endocrinology

b. Course Code: 11203234

c. Prerequisite: Basic understanding of physiology and biomolecules.

d. Rationale: Endocrinology is essential for comprehending the fundamental principles of life, advancing and improving medical science, and addressing various societal challenges. It empowers individuals to make informed decisions about their health, contributes to scientific advancements, and has far-reaching implications in diverse fields.

e. Course Learning Objective:

CLOBJ 1	Understand the basic principles of Endocrinology, including Mendelian
	inheritance, chromosome structure, and gene regulation.
CLOBJ 2	Describe the he structures and function of the major endocrine glands,
	including the hypothalamus, pituitary, thyroid, parathyroid, adrenal glands,
	pancreas.
CLOBJ 3	Explain the mechanisms of hormone action, including receptor binding,
	signal transduction, and gene expression regulation.

f. Course Learning Outcomes:

CLO 1	Demonstrate a comprehensive understanding of the physiological principles
	governing hormone synthesis, secretion, and regulation
CLO 2	Analyze the mechanisms of hormone action at the molecular, cellular, and organ
	system levels
CLO 3	Demonstrate proficiency in performing endocrine-related procedures,

g. Teaching & Examination Scheme:

	Teaching Scheme				Evaluation Scheme				
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester

Evaluation, CE- Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1 Introduction to endocrinology	20%	12
	General characters, Classification hormones. Hormone		
	Action- Signal transduction, Receptors-Types, Structure,		
	peptides, Steroids and aminoacid derivatives (Insulin,		
	Thyroid, steroid and Adrenergic receptors) Concept of second		
	messengers (cAMP, IP3 calcium, and NO). Role of Calcium:		
	Control of cellular calcium		
	levels, transport and regulation. Interaction between cAMP		
	and calcium. Calcium dependent proteins. Protein		
	phosphorylation and dephosphorylation. Assay of Hormones.		
2	UNIT 2 Hypothalamus Gland	20%	12
	Pituitary Hormones, feedback regulation, hypothalamus,		
	Pituitory gland axis. Hypothalamic Hormones-Synthesis,		
	secretion, transport and biological actions of hypothalamic,		
	adenohypophysial and neurohypophysial hormones.		
	Hypothalamic and pituitary disorders. Penial hormones-		
	melatonin and serotonin.		
3	UNIT 3	20%	12
	Thyroid Hormones: Chemistry, function and		
	metabolism, hypo and hyper thyroidism		
	Parathyroid Hormones		
	Parathormone and calcitonin, their role in calcium and		
	phosphate metabolism, abnormalities of parathyroid		
	functions. Role of vitamin D in calcium and phosphate		
	metabolism		
4	UNIT 4	20%	12
	Pancreatic Hormones		
	Biosynthesis of insulin and glucagon. Regulation of insulin		
	and glucagon secretions. Role in carbohydrate, lipid and		

	Total	100%	60 Hr
	and cholecystikinin.		
	Hormones of Gastrointestinal tract- Secretin, Gastrin		
	regulation of menstrual cycle and Pregnancy.		
	of androgens, estrogens and progesterone. Hormonal		
	Gonadal Hormones- Chemistry, biosynthesis and functions		
	adrenal cortical hormones. Disorders of cortical hormones.		
	Adrenal Cortex- Chemistry, biosynthesis and function of		
5	UNIT 5	20%	12
	hormones		
	adrenal medullary hormones. Disorders of Medullary		
	Adrenal Medulla- Chemistry, biosynthesis and function of		
	tolerance test.		
	Diabetes mellitus, melliturias, hypoglycemia, Glucose		
	protein metabolism. Endocrine disorders of pancreas-		

i. Text Books and Reference Books:

- 1. Endocrinology-By Leslie J DeGroot
- 2. Text book of Endocrinology-By Williams
- 3. Harper's Biochemistry-By Rober K. Murray, Daryl K. Grammer | McGraw Hill, Lange. Medical Books
- 4. Lehninger's Principles of Biochemistry-By Albert Lehninge

a. Course Name: Clinical Biochemistry

b. Course Code: 11203217

c. Prerequisite: A fundamental understanding of biochemistry is crucial since clinical biochemistry focuses on the biochemical basis of diseases and the analysis of biomolecules such as proteins, nucleic acids, and metabolites.

d. Rationale: Clinical biochemistry is a critical discipline that bridges basic biochemical principles with clinical applications. Its importance lies in its ability to provide valuable information for disease diagnosis, treatment monitoring, and preventive healthcare, ultimately contributing to improved patient outcomes and advancements in medical science.

e. Course Learning Objective:

CLOBJ 1	Discuss the metabolism of carbohydrates, lipids, and amino acids in health
	and disease states, including diabetes, obesity, and metabolic disorders
CLOBJ 2	Describe the role of biochemistry in the diagnosis and monitoring of
	diseases, including liver, heart and metabolic disorders.
CLOBJ 3	Apply critical thinking skills to analyze and solve clinical problems related
	to biochemistry
CLOBJ 4	Interpret laboratory tests used in clinical biochemistry, including
	measurements of blood glucose, lipid profiles, liver and renal function tests

f. Course Learning Outcomes:

CLO 1	Relate the cell and molecular biology with its general concepts
CLO 2	Explain the storage of DNA
CLO 3	Illustrate the structural organization of genes and the control of gene expression
CLO 4	Describe the protein structure and novel technologies for Protein technology

g. Teaching & Examination Scheme:

Teaching Scheme					Evaluation Scheme				
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

Sr.	Content	Weightage	Teaching
No.			Hours
1	UNIT 1	20%	12
	Clinical Biochemistry: Introduction and maintenance of		
	clinical laboratory, hazards in clinical biochemistry		
	laboratory, units, normal range, reference values. Factors		
	affecting reference values, quality control in laboratory – use		
	of external and internal standards. Automation in clinical		
	laboratory. Collection and preservation of specimens.		
	Disorders of nitrogen metabolism: Non-protein		
	nitrogenous compounds in blood and urine, urea, creatine,		
	creatinine, ammonia, aminoacids and their clinical		
	significance. Aminoacidurias - overflow, renal, specific.		
	Inbornerrors of aminoacid metabolismphenylketonuria,		
	alkaptonuria, hartnup's disease, maple-syrup urine		
	disease, hyperuricemiaprimaryand secondary gout, Lesh-		
	Nyhan syndrome, orotic aciduria, xanthinuria.		
2	UNIT 2	22%	14
	Prophyrin, haemoglobin and related compounds:		
	Porphyrias: classification, clinical and biochemical features.		
	Hepatic and erythropoietic porphyrias. Porphyrinuria. Tests		
	used in investigation of porphyrias and Porphyrinuria.		
	Occurrence of haemoglobin and related pigments in cells,		
	plasma and urine. Identification of pigments by		
	spectroscopy.		
	Haemoglobinopathies, Thalassemia, sickle cell anaemia.		
	Disorders of gastrointestinal tract: Test of gastric		
	function- fractional test meal.		
	Pentagastrin test, insulin stimulation test.		
	Hyperchlorohydria, achlorohydria, achylia gastrica,		
	chloride shift, alkalinetide. Pancreatic exocrine secretion –		

	composition. Duodenal contents– collection, examination		
	following stimulation of pancreas; analysis;		
	malaabsorption syndrome due to intestinal disease and		
	pancreatic dysfunction; differential diagnosis.		
	Disaccharidase deficiency.		
3	UNIT 3	18%	10
	Biochemical aspects of liver disease: Liver function tests		
	related to protein. Carbohydrate, lipid pigments metabolism,		
	detoxification and excretion. Serum enzymes in liver		
	disease. Jaundice classification and differential diagnosis.		
	Kernicterus.		
	Renal function: Tests for evaluation, concentration,		
	dilution, excretion, clearance tests; Nephritis, nephrotic		
	syndrome.		
4	UNIT 4	20%	12
	Clinical Enzymology: Plasma enzyme in diagnosis		
	and prognosis-aminotransferases, creatinekinase, LDH,		
	amylase, phosphatases, choline esterase, glucose 6-		
	phosphate dehydrogenase, gamaglutamyl transferase.		
	Isozymes of LDH and alkaline phosphatase. Clinical		
	application of plasma enzyme assays in myocardial		
	infarction, liver disease, and muscle disease.		
	Lipid metabolism: Plasma lipids and lipoproteins and their		
	functions. Hyperlipoproteinemias classification-primary		
	and secondary. Investigation of lipoproteinemias and		
	lipedemias.		
5	UNIT 5	20%	12
		20 / 0	12
	Disorders of carbohydrate metabolism: Diabetes		
	mellitus-classification, aetiology, clinicaland laboratory		
	features, diagnosis of diabetes mellitus- glucose tolerance		
	test, random, fasting and postpranodial glucose levels;		
	glycosuria; Ketone bodies' glycosylated haemoglobin,		
	plasma insulin, metabolic complications-diabetes		

Total	100%	60 Hr
hereditary fructosuria, lactose intolerance.		
Investigation of glycogen storage disease, galactosemia,		
hypoglycemia in children- neonatal and early infancy-		
glucagon and leucine test) extended G.T.T.;		
provoked. Diagnosis- stimulation tests (Intravenus		
atherosclerosis; neuropathy-Hyperglycemia-fasting and		
hyperglycemic coma and nonketotic coma; lactic acidosis;		

i. Text Books & Reference Books

- 1. Clinical Biochemistry: Metabolic and clinical aspects-William J. Marshall and Stephen K. Bengert
- 2. Clinical Biochemistry: An illustrated text Allan Gaw et. al.
- 3. Clinical Biochemistry -Nanda Maheshwari
- 4. Practical clinical Biochemistry -Ranjana Chawala
- 5. Clinical Biochemistry -R. Luxton

a. Course Name: Molecular Biology-II & Bioinformatics

b. Course Code: 11203280

c. Prerequisite: A fundamental understanding of Molecular Biology-II & Bioinformatics is crucial since tremendous amount of data has been generated to connect the dots, It's really needed to use bioinformatic tools.

d. Rationale: Molecular Biology techniques generate vast amounts of data, including DNA sequences, gene expression profiles, and protein structures. These data serve as the foundation for further analysis and interpretation. With the massive amounts of data generated by molecular biology techniques, bioinformatics provides essential methods for organizing, visualizing, and extracting meaningful information from these datasets.

e. Course Learning Objective:

CLOBJ 1	Gain a deep understanding of advanced concepts in molecular biology,			
	including DNA replication, transcription, translation, gene regulation.			
CLOBJ 2	Acquire skills in analyzing and interpreting genomic data, including			
	genome sequencing, annotation, and comparative genomics.			
CLOBJ 3	Learn to analyze and interpret biological data generated by molecular			
	biology techniques using bioinformatics tools and software.			

f. Course Learning Outcomes:

CLO 1	Demonstrate Proficiency in Molecular Biology Techniques
CLO 2	demonstrate the ability to use bioinformatics software and databases to
	analyze DNA and protein sequences, including sequence alignment.
CLO 3	Students will collaborate effectively in interdisciplinary research teams,
	integrating expertise from molecular biology, bioinformatics.

g. Teaching & Examination Scheme:

Teaching Scheme			Evaluation Scheme						
				Internal Evaluation			ESE	2	
L	T	P	C	MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation, CE-Continuous Evaluation, ESE- End Semester Examination

Sr.	Content	Weightage	Teaching Hours	
No.				
1	UNIT 1	20%	12	
	Protein Synthesis: General features of genetic code and its			
	elucidation. Structural components of Prokaryotic and Eukaryotic			
	ribosomes. in-vitro translation systems.t-RNA structure and role in			
	protein biosynthesis. Mechanism of			
	protein synthesis in Prokaryotic and Eukaryotic- Aminoacyl t-RNA			
	synthetases Aminoacylation of tRNA initiation, elongation and			
	termination. Wobble hypothesis. Mitochondrial genetic code.			
	Nonsense suppression. Inhibitors of protein synthesis (Antibiotics			
	and other inhibitors).			
2	UNIT 2	22%	14	
	Non ribosomal biosynthesis of polypeptides: Biosynthesis of			
	Gramicidin-s. Post translational modifications.			
	Protein targetting: Cell organelles and proteins involved in			
	protein sorting. The signal hypothesis, signal sequences and signal			
	recognition particle. Molecular chaperones. Protein degradation,			
	Lysosomal degradation. PEST sequences. The Ubiquitin pathway.			
	Protein stability and the N-end rule. Translational feedback-			
	Synthesis of ribosomes and ribosomal RNA, Interferons.			
3	UNIT 3	18%	10	
	Regulation of Gene Expression: Regulation of gene expression at			
	transcriptional level. The lac repressor. Fine structure of lac operon.			
	cAMP and the catabolic activator protein. Gal operon and concept			
	of dual promoters. Dual functions of the repressor the ara operon.			
	Transcriptional control by attenuation. The trp operon			
4	UNIT 4	20%	12	
	Eukaroytic Gene Regulation: Positioning chromosomes for			
	transcription. Polytene chromosomes. Gene amplification and gene			
	rearrangements. Transcriptional control by alternative RNA			
	processing and enhancers.			

Bioinformatics: Introduction to bioinformatics, human genome		
project, Biological Database Principles, applications		
Primary database- Genebank, EMBL, PDB, SWISSPROT.		
Specialized Database SCOP/CATH. Database Querying using Key		
word and search engines.		
5 UNIT 5	20%	12
Homeotic genes. Gene amplification. DNA binding protein motifs-		
Helix-turn-helix, zinc finger and leucine zipper		
motifs.		
Sequence Analysis-I: Concepts of DNA/Protein sequence		
alignments and their importance. Sequence alignment		
method and programmes- BLAST and FASTA. Pair wise alignment		
versus multiple sequence alignment.		
Sequence Analysis-II. Phylogenetic analysis and tree construction,		
sequence analysis of nucleic acids. Computational analysis,		
determining transcriptional analysis, secondary structure		
prediction. Primer designing. Genome analysis.		
Total	100%	60

i. Text Books and Reference Books:

- 1. Molecular Biology by Robert Weaver
- 2. Lehninger Principles of Biochemistry,-David L. Nelson, Michael M. Cox,; Publisher: W. H. Freeman; Fourth Edition
- 3. Molecular Biology of Cell-Bruce Albert
- 4. The Cellular & Molecular Biology-EDP De Robertis & EMF De Robertis
- 5. Molecular Biology of the Gene-J.D. Watson and H.H. Nancy