

Four-Year Undergraduate Programme

Bachelor of Technology Computer Science & Engineering - Cyber Security (CS)

Faculty of Engineering & Technology

Parul University

Vadodara, Gujarat, India

Faculty of Engineering & Technology Bachelor of Technology in Computer Science & Engineering – Cyber Security(CS)

1. Vision of the Department

To be a distinct hub of education that prepares skilled professionals in the field of Computer Science and Engineering.

2. Mission of the Department

- **M1** Enhance academic performance by adopting industry-oriented curriculum focusing on the thrust area of computer education through integrated learning in collaboration with prominent industries.
- **M2** Preparing students to face challenges of the real world through internships and project-based learning.
- **M3** Foster a research culture that results in a sound knowledge base, high-quality publications, new products and IPR.
- **M4** Inculcate ethical consciousness in students so that they can achieve success in their professional endeavours and can become responsible citizens.

3. Program Educational Objectives

The statements below indicate the career and professional achievements that the B.Tech. Computer Science engineering curriculum enables graduates to attain.

PEO 1	To develop technical skills (critical investigation, communication, analytical and computer) and human relations skills (group dynamics, team building, organization and delegation) to enable students to transform the acquired knowledge into action.
	To inculcate critical analysis and communication skills into students to effectively present their views, both in writing and through oral presentations.
PEO 3	To provide an environment for exploring the Research & Development attitude, to help the students in the Research and Development field.

4. Program Learning Outcomes

Program Learning outcomes are statements conveying the intent of a program of study.

PLO 1	Engineering knowledge:	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PLO 2	Problem analysis:	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using the first principles of mathematics, natural sciences, and engineering sciences.

PLO 3	Design/develop ment of solutions:	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
PLO 4	Conduct investigations of complex problems:	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PLO 5	Modern tool usage:	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PLO 6	The engineer and society:	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PLO 7	Environment and sustainability:	Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
PLO 8	Ethics:	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PLO 9	Individual and team work:	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PLO 10	Communication:	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PLO 11	Project management and finance:	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PLO 12	Life-long learning:	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

5. Program Specific Learning Outcomes

PSO 1	Demand as per recent development	An ability to analyse, design, verify, validate, code and maintain the solution of given problem to derive execution of software system
PSO 2	Software skill	An ability to understand, apply and work with one or more domain using knowledge of mathematical techniques and principles with relevant areas of computer science

6. Credit Framework

Semester wise Credit d the program	
Semester-1	16
Semester-2	20
Semester-3	22
Semester-4	21
Semester-5	23
Semester-6	24
Semester-7	27
Semester-8	14
Total Credits:	167

Category wise Credit distribution of the programme			
Category	Credit		
Major Core	113		
Minor Stream	0		
Multidisciplinary	16		
Ability Enhancement Course	9		
Skill Enhancement Courses	7		
Value added Courses	4		
Summer Internship	4		
Research Project/Dissertation	14		
Total Credits:	167		

7. Program Curriculum

		Semester1				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303192102	Engineering Physics	4	3	2	0
2	303191101	Mathematics-I	4	4	0	0
3	303105105	Fundamentals of Information Security	2	1	2	0
4	303193103	Communication Skills	2	0	0	2
5	303105104	Computational Thinking for Structured Design 1	4	3	2	0
6	303104105	Environmental Science	AUDIT	1	0	0
		Total	16	12	6	2
		Semester2				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
7	303105151	Computational Thinking for Structured Design 2	4	3	2	0
8	303107152	ICT Workshop	1	0	2	0
9	303105154	Mastering Kali Linux and OSNIT	3	2	2	0
10	303191151	Mathematics-II	4	4	0	0
11	303193152	Advanced Communication &Technical Writing	2	0	0	2
12	303105153	Global Certifications- Fundamentals (AZ-900)	2	2	0	0
13	303106103	Electrical and Electronics Engineering	4	3	2	0
		Total	20	14	8	2
		Semester3				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
14	303105201	Design of Data Structures	3	3	0	0
15	303105202	Data Structure & Algorithms Laboratory	2	0	4	0
16	303105203	Database Management System	3	3	0	0
17	303105204	Database Management System Laboratory	1	0	2	0
18	303105205	Object Oriented Programming with JAVA	2	2	0	0

19	303105206	Object Oriented Programming with JAVA Laboratory	1	0	2	0
20	303105212	Kali Linux and Shell Scripting	3	3	0	0
21	303105213	Kali Linux and Shell Scripting Laboratory	1	0	2	0
22	303191202	Discrete Mathematics	4	4	0	0
23	303193203	Professional Communication Skills	2	0	0	2
		Total	22	15	10	2
		Semester4				
Sr.				_		_
No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
24	303105251	Operating System	3	3	0	0
25	303105252	Operating System Laboratory	1	0	2	0
26	303105253	Software Engineering	3	3	0	0
27	303105254	Software Engineering Laboratory	1	0	2	0
28	303105260	Networking Concepts and Security	3	3	0	0
29	303105261	Networking Concepts and Security Laboratory	1	0	2	0
30	303105257	Programming in Python with Full Stack Development	3	3	0	0
31	303105258	Programming in Python with Full Stack Development Laboratory	1	0	2	0
32	303193252	Professional Grooming and Personality Development	1	0	0	1
33	303105262	Cryptography	3	3	0	0
34	303105263	Cryptography Laboratory	1	0	2	0
		Total	21	15	10	1
		Semester5				
Sr.						_
No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
35	303105218	Design and Analysis of Algorithms	3	3	0	0
36	303105219	Design and Analysis of Algorithms Laboratory	2	0	4	0
37	303105320	Web Application Security	3	3	0	0
38	303105321	Web Application Security Laboratory	1	0	2	0
39	303105322	Mobile Application security	3	3	0	0
40	303105323	Mobile Application security Laboratory	1	0	2	0
	1	l				

41	303105324	Metasploit-Framework	3	3	0	0
42	303105325	Metasploit-Framework Laboratory	1	0	2	0
43	303193304	Professionalism & Corporate Ethics	1	1	0	0
44	303105311	Quant, and Reasoning	3	3	0	0
45		Open Elective01(Compulsory Subjects:1)	2	2	0	0
		Total	23	17	10	0
		OpenElective01				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303101331	Basic Aircraft Science	2	2	0	0
2	303105303	Python Programming	2	2	0	0
3	303105304	Cyber Security	2	2	0	0
4	303105305	Internet of Things	2	2	0	0
5	303107346	Fundamentals of Communication Engineering	2	2	0	0
6	303105301	AWS Fundamental	2	2	0	0
		Semester6				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
	Subject Code 303105300	Subject Name Project-1	Credit 3	Lect 0	Lab	Tut 0
No.	,					
No. 46	303105300	Project-1	3	0	6	0
No. 46 47	303105300 303105365	Project–1 Security Monitoring	3	0	6	0
No. 46 47 48	303105300 303105365 303105366	Project–1 Security Monitoring Security Monitoring Laboratory	3 3 1	0 3 0	6 0 2	0 0 0
No. 46 47 48 49	303105300 303105365 303105366 303105367	Project–1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security	3 3 1 3	0 3 0 3	6 0 2 0	0 0 0 0
No.4647484950	303105300 303105365 303105366 303105367 303105368	Project–1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware	3 3 1 3	0 3 0 3 0	6 0 2 0 2	0 0 0 0
No. 46 47 48 49 50 51	303105300 303105365 303105366 303105367 303105368 303105389	Project–1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware	3 3 1 3 1 3	0 3 0 3 0 3	6 0 2 0 2 0	0 0 0 0 0
No. 46 47 48 49 50 51 52	303105300 303105365 303105366 303105367 303105368 303105389	Project–1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware Analysis Laboratory	3 3 1 3 1 3	0 3 0 3 0 3	6 0 2 0 2 0	0 0 0 0 0
No. 46 47 48 49 50 51 52	303105300 303105365 303105366 303105367 303105368 303105389	Project-1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware Analysis Laboratory PEC01(CompulsorySubjects:1)	3 3 1 3 1 3	0 3 0 3 0 3	6 0 2 0 2 0	0 0 0 0 0 0
No.464748495051525354	303105300 303105365 303105366 303105367 303105368 303105389	Project-1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware Analysis Laboratory PEC01(CompulsorySubjects:1) PEC01-Labs-(CompulsorySubjects:1)	3 3 1 3 1 3 1	0 3 0 3 0 3 0	6 0 2 0 2 0 2	0 0 0 0 0 0
No. 46 47 48 49 50 51 52 53 54 55	303105300 303105365 303105366 303105367 303105368 303105389	Project–1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware Analysis Laboratory PEC01(CompulsorySubjects:1) PEC01–Labs-(CompulsorySubjects:1) PEC02(CompulsorySubjects:2)	3 3 1 3 1 3 1 3	0 3 0 3 0 3 0 3 0 3	6 0 2 0 2 0 2 0 2	0 0 0 0 0 0
No. 46 47 48 49 50 51 52 53 54 55 56	303105300 303105365 303105366 303105367 303105368 303105389 303105390	Project-1 Security Monitoring Security Monitoring Laboratory Cloud Computing and Security Cloud Computing and Security Laboratory Reverse Engineering and Malware Analysis Reverse Engineering and Malware Analysis Laboratory PEC01(CompulsorySubjects:1) PEC01-Labs-(CompulsorySubjects:2) PEC02-Labs-(CompulsorySubjects:2)	3 3 1 3 1 3 1 3 1 1 1 1	0 3 0 3 0 3 0 3 0 3	6 0 2 0 2 0 2 0 2	0 0 0 0 0 0 0

Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105314	Data visualization and Data Analytics	3	3	0	0
2	303105307	Artificial Intelligence	3	3	0	0
3	303105395	Digital Forensics and Incident Response	3	3	0	0
		PEC01-LAB				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105396	Data visualization and Data Analytics Laboratory	1	0	2	0
2	303105308	Artificial Intelligence Laboratory	1	0	2	0
3	303105396	Digital Forensics and Incident Response Laboratory	1	0	2	0
		PEC02				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105379	Mobile Application Development	3	3	0	0
2	303105385	MEA(R)N Stack Web Development	3	3	0	0
3	303105387	Dev0ps	3	3	0	0
		PEC02-LAB				
1	303105380	Mobile Application Development Laboratory	1	0	2	0
2	303105386	MEA(R)N Stack Web Development Laboratory	1	0	2	0
3	303105388	DevOps Laboratory	1	0	2	0
		Semester7				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
58	303105424	Summer Internship	2	0	0	0
59	303105415	Blockchain and Web 3.0Security	3	3	0	0
60	303105416	Blockchain and Web 3.0 Security Laboratory	1	0	2	0
61	303105423	Project-II	6	0	12	0
62	303105413	Fundamental of OT Security	3	3	0	0
63	303105414	Fundamental of OT Security Laboratory	1	0	2	0
64		PEC03(CompulsorySubjects:1)	3	3	0	0
65		PEC03-Labs-(CompulsorySubjects:1)	1	0	2	0

66		PEC04(CompulsorySubjects:1)	3	3	0	0
67		PEC04-Labs-(CompulsorySubjects:1)	1	0	2	0
68		OpenElective-2	3	3	0	0
		Total	27	15	8	0
		Open Elective II				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105451	Remote Sensing and Geo Informatics	3	3	0	0
2	303105452	Real Time Systems	3	3	0	0
3	303105453	Cyber Physical Systems	3	3	0	0
4	303105454	Computational Number Theory	3	3	0	0
5	303105455	VLSI System Design	3	3	0	0
		PEC03				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105378	Software Testing and Quality Assurance	3	3	0	0
2	303105361	Big data Analytics	3	3	0	0
3	303105353	Machine Learning	3	3	0	0
		PEC03-LAB				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105378	Software Testing and Quality Assurance Laboratory	1	0	2	0
2	303105362	Big data Analytics Laboratory	1	0	2	0
3	303105354	Machine Learning Laboratory	1	0	2	0
		PEC04				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105381	Image Processing	3	3	0	0
2	303105417	Information Security Management System	3	3	0	0
3	303105485	Augmented Reality and Virtual Reality	3	3	0	0
		PEC04-LAB				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
1	303105382	Image Processing Laboratory	1	0	2	0

2	303105418	Information Security Management System Laboratory	1	0	2	0
3	303105486	Augmented Reality and Virtual Reality Laboratory	1	0	2	0
		Semester8				
Sr. No.	Subject Code	Subject Name	Credit	Lect	Lab	Tut
	Subject Code 303105499	Subject Name Internship	Credit	Lect 0	Lab 28	Tut 0

Semester 1 - 1

a. Course Name: Engineering Physics.

b. Course Code: 303192102

c. Prerequisite: Knowledge of Physics and some basic concepts in Mathematics like differentiation, integration, limit, differential equation, vector calculus up to 12th science level.

d. Rationale: Knowledge of physics is essential for all Engineering branches because physics is the foundation subject of all the branches of engineering and it develops the scientific temperament and analytical capability of engineering students.

e. Course Learning Objectives:

CLOBJ 1	Understand the basics of quantum mechanics, including Schrödinger's equations and the physical significance of wave functions.
CLOBJ 2	Apply the Schrödinger equation to analyze particles in one-dimensional potential boxes, emphasizing practical implications and tunneling effects.
CLOBJ 3	Master concepts of energy bands, semiconductor classification, E-k diagrams, and semiconductor device analysis including P-N junction diodes.
CLOBJ 4	Comprehensively understand material classification, focusing on magnetic materials, nanomaterials, and analyzing physical, thermal, electrical, optical, and magnetic properties.
CLOBJ 5	Gain expertise in laser principles, types, and applications, as well as fiber optics principles and applications. Understand optoelectronic devices, their functionalities, and practical applications.

f. Course Learning Outcomes:

CLO 1	Understand the basics of quantum mechanics, including Schrödinger's equations and the physical significance of wave functions.
CLO 2	Apply the Schrödinger equation to analyze particles in one-dimensional potential boxes, emphasizing practical implications and tunneling effects.
CLO 3	Master concepts of energy bands, semiconductor classification, E-k diagrams, and semiconductor device analysis including P-N junction diodes.
CLO 4	Comprehensively understand material classification, focusing on magnetic materials, nanomaterials, and analyzing physical, thermal, electrical, optical, and magnetic properties.
CLO 5	Gain expertise in laser principles, types, and applications, as well as fiber optics principles and applications. Understand optoelectronic devices, their functionalities, and practical applications.

g. Teaching & Examination Scheme:

Teaching Scheme					Evaluat	cion Scheme			
L	T	P	C	Internal Evaluation ESE		Total			
				MSE	CE	P	Theory	P	Total
3	-	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: Modern Physics	20%	9
	Introduction about quantum Mechanics, Schrödinger's		
	equations, Time dependent and Time Independent Wave		
	Equation, Physical Significance of the wave Function, Ap-		
	plication of Schrödinger equation in particles in One Di-		
	mensional Potential Box and Tunneling effects.		

2	UNIT-II: Band Theory of Semiconductors	20%	9
	Energy bands in solids, Classification of Materials into		
	Semiconductors & Insulators, Density of state, E-k dia-		
	gram, Kronig-Penny model (to introduce origin of band		
	gap), and Effective mass. Direct and indirect band gap.		
	Carrier Concentration in semiconductors, Fermi Level		
	in Intrinsic and Extrinsic Semiconductors, P-N junction		
	diode, Ohmic and Schottky Junction.		
3	UNIT-III: Materials	20%	9
	Classification of materials: Magnetic materials, Nanoma-		
	terials based on semiconductors and metal oxides, Basic		
	characteristic properties of nanomaterials, Novel Materi-		
	als. Physical, Thermal, Electrical, Optical and Magnetic		
	properties of materials.		
4	UNIT-IV: Laser and Fiber Optics	20%	9
	Lasers: Interaction of radiation with Matter, Absorption,		
	Spontaneous and Stimulated emission, Characteristics of		
	Lasers, Types of Lasers: Ruby Laser, Helium-Neon Laser,		
	Semiconductor Diode Laser, Applications of Lasers. Fiber		
	Optics: Principle and Structure of Optical Fiber, Numeri-		
	cal Aperture of fiber, Types of Optical Fibers, Attenuation		
	in Optical Fibers, Applications of Optical Fibers.		
5	UNIT-V: Devices	20%	9
	Optoelectronic Devices: Photoconductive cell, photo-		
	voltaic cell, Photodiode, Phototransistor, LED, IR emit-		
	ters, Opto coupler, X-ray diffractometer, Quantum de-		
	vices and their applications.		

i. Text Books:

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995)
- **2.** B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., (2007)
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008)
- 4. Engineering Physics HK Malek and A. K. Singh- McGraw Hill Publication
- 5. Semiconductor Optoelectronic Devices- P. Bhattacharya-Prentice Hall of India
- 6. Fundamentals of Physics- Halliday, Resnick and Walker

j. List of Practicals:

- 1. I-V characteristics of light emitting diode in forward bias.
- 2. I-V characteristics of Zener diode in reverse bias.
- **3.** Determination of Velocity of ultrasonic waves in water.
- 4. Determination of Dielectric constants of Dielectric samples.

- 5. Measurement of Band gap of semiconductor material.
- **6.** Measurement of Hall coefficient RH and carrier concentration in a semiconductor.
- 7. Measurement of Planck's constant using LED.
- 8. Measurement of wavelength of laser light using diffraction grating.
- 9. Measurement of Numerical aperture of an optical Fiber.
- 10. Moment of Inertia of a flywheel.
- 11. Measurement of power loss in an optical fibre.
- **12.** B-H Curve tracing.
- 13. Determination of Young's modulus.
- 14. Determination of thermal conductivity. (Searle's method or Lee's method)

Semester 1 - 2

a. Course Name: Mathematics-I

b. Course Code: 303191101

c. Prerequisite: Knowledge of Mathematics up to 12th science level

d. Rationale: The Mathematics I syllabus integrates fundamental calculus concepts, advanced mathematical techniques, and matrix algebra, preparing students for engineering challenges with optimized problem-solving skills.

e. Course Learning Objectives:

CLOBJ 1	Develop a comprehensive understanding of definite and improper integrals, including the application of integration techniques to find areas and volumes in both Cartesian and Polar coordinates.
CLOBJ 2	Utilize differential equations to model and solve practical scenarios, demonstrating proficiency in various solution techniques.
CLOBJ 3	Analyze the convergence and divergence of sequences and series, employing tests such as the Alternating Series Test and Ratio Test.
CLOBJ 4	Analyze matrix operations and determinants, exploring their properties and applications in solving systems of linear equations.
CLOBJ 5	Apply Fourier series for representing periodic functions, verifying Dirichlet's conditions.
CLOBJ 6	Solve optimization problems using multivariable calculus concepts, such as Lagrange's multiplier.

f. Course Learning Outcomes:

CLO 1	Develop understanding of fundamental mathematical concepts.
CLO 2	Formulate and solve mathematical models for real-world engineering problems.
CLO 3	Integrate knowledge from different mathematical topics to analyze and solve complex engineering problems.
CLO 4	Critically analyze mathematical results, interpret their engineering significance, and make informed decisions based on mathematical outcomes, fostering a deeper understanding of the subject.
CLO 5	Clearly and effectively communicate mathematical ideas, solutions, and reasoning, both in written and oral formats, demonstrating effective communication skills.

g. Teaching & Examination Scheme:

T	Teaching Scheme Evaluation Scheme								
L	T	P	C	Interna	Internal Evaluation ESE		Total		
				MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT 1: Improper Integral & Application of Def-	8%	5
	inite Integral		
	Evaluation of definite and improper integrals, Beta and		
	Gamma functions and their properties. Area bounded		
	by curves in Cartesian and Polar form, Area of a region		
	bounded by function, Area of a region bounded by curves		
	in Parametric form, Volume by slicing, Volume of solid by		
	revolution.	1204	
2	UNIT 2: First Order Ordinary Differential Equa-	15%	9
	tion		
	Exact, linear and Bernoulli's equations, Euler's equations,		
	Equations not of first degree: equations solvable for p,		
	equations solvable for y, equations solvable for x and		
	Clairaut's type, Applications.		
3	UNIT 3: Matrices	25%	15
	Matrices & Determinants with Properties, Linear Inde-		
	pendence, Rank of Matrix, System of Linear Equations,		
	Consistency of System, Solution of system of Linear Equa-		
	tions by Gauss Jordan and Gauss-Elimination Method,		
	Eigenvalues, Eigenvectors, Symmetric, Skew-symmetric,		
	and orthogonal Matrices, Eigenbases, Diagonalization,		
	Cayley Hamilton Theorem and its Applications, Diago-		
	nalization, Orthogonal Transformation, Quadratic form.		

4	UNIT 4: Sequences and Series	17%	10
	Basics of Sequences, Bounded and Monotonic Sequences,		
	Series, Convergence of sequence and series, Geometric se-		
	ries, P-series, Cauchy's Integral Test, Comparison Test,		
	Alternating Series, Absolute and Conditional convergence,		
	Ratio test, Cauchy's Root Test, Power series, Taylor's and		
	Maclaurin's series.		
5	UNIT 5: Fourier Series	10%	6
	Fourier Series of 2 periodic functions, Dirichlet's condi-		
	tions for representation by a Fourier series, Fourier Series		
	of a function of period 2, Fourier Series of even and odd		
	functions, Half range series.		
6	UNIT 6: Multivariable Calculus (Differentiation)	25%	15
	Functions of Several Variables, Limit, Continuity, Partial		
	Derivatives, Homogeneous function, Euler's Theorem for		
	homogeneous function, Modified Euler's Theorem, Chain		
	Rule, Implicit function, Jacobian, Tangent plane and Nor-		
	mal line, Maximum and Minimum Values, Lagrange's		
	Multiplier, Taylor's and Maclaurin's Series for functions		
	of two variables.		

i. Text Book and Reference Book:

- 1. Calculus and Analytic Geometry (TextBook) By G.B. Thomas and R.L. Finney — Addison Wesley
- 2. Calculus with early transcendental functions By James Stewart — Cengage Learning
- **3.** Higher Engineering Mathematics By B. S. Grewal — Khanna Publications
- 4. Elementary Linear Algebra (Text Book) By Howard Anton, Chris Rorres — Willy India Edition — 9th Edition
- 5. Advanced Engineering Mathematics (Text Book)By Erwin Kreyszig Willey India Education
- **6.** A textbook of Engineering Mathematics By N.P. Bali and Manish Goyal — Laxmi Publications

Semester 1 - 3

a. Course Name: Fundamentals of Information Security

b. Course Code: 303105105

c. Prerequisite: Basic Computer Skills, IT Fundamentals, Cybersecurity Awareness

d. Rationale: The Fundamentals of Information Security subject is essential in providing a comprehensive understanding of the core principles and practices that safeguard information and data in today's digital landscape. This course equips individuals with the foundational knowledge necessary to identify, assess, and mitigate security risks, ensuring the confidentiality, integrity, and availability of information systems. By delving into topics such as access controls, network security, and security policies, students gain insights into the intricate web of threats and countermeasures inherent in the field of information security. The subject not only cultivates a deep appreciation for the importance of protecting sensitive information but also empowers individuals to contribute proactively to the development and maintenance of secure technological environments, which is paramount in the face of evolving cyber threats and the increasing reliance on digital platforms across various industries.

e. Course Learning Objectives:

CLOBJ 1	Define information security and its importance in the modern digital landscape. Identify key terms and concepts related to information security.
CLOBJ 2	Examine the legal and ethical considerations in information security. Understand the implications of non-compliance with information security laws.
CLOBJ 3	Explore various types of cyber threats and attacks. Analyze common vulnerabilities in computer systems and networks. Explore methods of access control and user authentication.
CLOBJ 4	Introduce the concept of risk management in information security. Understand industry standards and compliance requirements. Evaluate the role of standards in maintaining information security.
CLOBJ 5	Demonstrate a comprehensive understanding of core cybersecurity concepts.

f. Course Learning Outcomes:

CO 1	Reasonable understanding of the fundamentals of the cybersecurity domain and related issues.
CO 2	Students should be able to define ethical principles and identify situations in the realm of cybersecurity where ethical dilemmas may arise, such as issues related to privacy, data integrity, and responsible disclosure.
CO 3	Students should be able to identify and classify various types of cyber threats and gain the ability to analyze and assess vulnerabilities in information systems.
CO 4	Define and explain the fundamental concepts of Identity and Access Management, including user identification, authentication, authorization, and accountability.
CO 5	Students will gain insights into the security issues and challenges associated with e-commerce, including the risks of data breaches, identity theft, and fraud. They should be able to identify vulnerabilities in online transactions.

g. Teaching & Examination Scheme:

T	Teaching Scheme				Evaluation Scheme				
\mathbf{L}	\mathbf{T}	P	\mathbf{C}	Inte	rnal Eva	luation	ESE		Total
				\mathbf{T}	CE	P	Theory	P	Total
1	-	2	2	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; \mathbf{MSE} - Mid-Semester Evaluation; \mathbf{CE} - Continuous Evaluation; \mathbf{ESE} - End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT 1: Introduction to Cybersecurity & Ethical	20%	2
	Hacking		
	Need of Cybersecurity, CIA Triad, Security Architecture,		
	Security Governance, Security Auditing, Regulations &		
	Frameworks, Ethical Hacking, Types of Hackers, Phases		
	of Ethical Hacking, Penetration Testing, Types of Pene-		
	tration Testing.		

2	UNIT 2: Exploring Ethics as it Relates to Cyber-	20%	3
	security		
	Differentiate between ethics and laws, Distinguish among		
	types of ethical concerns, Define cyberbullying, Identify		
	actions that constitute cyberbullying, Identify possible		
	warning signs of someone being cyberbullied, Identify laws		
	applicable to cybersecurity.		
3	UNIT 3: Understanding Cyber Threats and Vul-	20%	4
	nerabilities		
	Differentiate between a cyber-threat and a vulnerability,		
	Describe types of cyber threats, Analyze types of current		
	cyber threats, Describe the concept of malware and the		
	techniques to guard against it, Identify the perpetrators		
	of different types of malicious hacking, Describe the char-		
	acteristics of vulnerabilities, Identify the prevention of and		
	protection against cyber threats.		
4	UNIT 4: IdAM (Identity and Access Manage-	20%	3
	ment)		
	Authentication and authorization, Authentication and au-		
	thorization principles, Regulation of access, Access admin-		
	istration, IdAM, Password protection, Identity theft.		
5	UNIT 5: E-Commerce, Digital Payments, and Its	20%	3
	Security		
	Overview of social media and its security, Cybersecurity		
	of digital devices, Tools and technology for cybersecurity,		
	Cybersecurity plan and crisis management, Risk-based as-		
	sessment, audit and compliance, Cybersecurity best prac-		
	tices and do's and don'ts, Platforms to report and combat		
	cybercrime.		

i. Reference:

- 1. "Security Engineering: A Guide to Building Dependable Distributed Systems" by Ross J. Anderson
- 2. "Network Security Essentials" by William Stallings
- 3. "Hacking: The Art of Exploitation" by Jon Erickson
- 4. "Information Security: Principles and Practice" by Mark Stamp
- ${\bf 5.}$ "Introduction to Computer Security" by Michael Goodrich and Roberto Tamassia

j. List of Practical:

- 1. Use of hashes to check the integrity of the file.
- 2. Perform passive information gathering techniques to gather the information of the target.
- **3.** Implementation of Steganography.

- 4. Perform Basic Linux commands for file handling.
- 5. Set-up OSINT framework tool on windows. (Spiderfoot)
- **6.** Setting up IdAM in windows server.
- 7. Perform vulnerability scanning using nmap.
- 8. CASE STUDY on UPI Security.
- 9. Implementation of MITM- attack using Wireshark / network sniffers.
- 10. Implementation of Steganography.

Semester 1-4

a. Course Name: Communication Skills

b. Course Code: 303193103

c. Prerequisite: Knowledge of English Language studied till 12th standard

d. Rationale: Basic Communication Skills are essential for all Engineers.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with electrical current, potential difference, power and energy, sources of electrical energy and elements of electrical circuit.
CLOBJ 2	Solve problems related to Alternating current, alternating voltage, etc, Demonstrate a clear understanding of Pure R, L C circuit and combination of RLC, Series and Parallel combination of R, L and C, etc.
CLOBJ 3	Acquire knowledge of the resistor, capacitor, and inductor and their performance characteristics for series and parallel connections.
CLOBJ 4	Understand different single phase and three phase circuits.
CLOBJ 5	Demonstrate a clear understanding of the basic concepts, working principles and applications of transformer, DC machines and AC machines.
CLOBJ 6	Study the use of LT Switchgear, Fuse, MCB, ELCB etc.

f. Course Learning Outcomes:

CLO 1	Understand the importance of creative and critical thinking.
CLO 2	Expand vocabulary with proper pronunciation.
CLO 3	Comprehend the basics of English grammar.
CLO 4	Read & write effectively for a variety of contexts.
CLO 5	Develop confidence in speaking skills.

g. Teaching & Examination Scheme:

Te	Teaching Scheme			Evaluation Scheme					
L	T	P	C	Interna	l Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
0	2	0	2	0	100	0	0	0	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: Crazy Scientist:	5%	2
	The students will be taught the importance of invention		
	and innovation using some examples that changed the		
	world the way it worked.		
2	UNIT-II: Phonetics	10%	4
	IPA Introduction (listening racks), Phonic Sounds Pro-		
	nunciation Practice including transcription.		
3	UNIT-III: Vocabulary Building & Word Forma-	10%	2
	tion Process		
	Compounding, clipping, blending, derivation, creative re-		
	spelling, coining and borrowing Prefixes & suffixes, syn-		
	onyms & antonyms, standard abbreviations (related ac-		
	tivities will be provided).		
4	UNIT-IV: Speaking Activity: Role play on Critical	10%	4
	Thinking (Life boat)		
	This activity topic gears towards making students do role		
	play based on various scenarios. It involves giving them		
	a scenario and asking them to further develop the idea in		
	a very interesting manner, then going on to enact it. It		
	aims to improve students' convincing skills.		
5	UNIT-V: Picture Description & Picture Connec-	15%	2
	tor		
	Enable students to use vocabulary and useful expression		
	to describe the picture. In this class the students will		
	be trained to form logical connections between a set of		
	pictures which will be shared with them. This geared		
	towards building creativity and presentation skills.		
6	UNIT-VI: Mine Activity: Usage of Preposition:	8%	2
	Students will learn to use proper propositions by active		
	participation in the activity.		

7	UNIT-VII: Worksheets on Identifying Common	12%	2
	Errors in Writing:		
	Sentence structure, Punctuations, Subject-Verb Agree-		
	ment, Noun-Pronoun Agreement		
8	UNIT-V: Reading Skills	10%	2
	The art of effective reading and its various strategies to		
	be taught to the learners and practice exercises be given		
	on reading comprehension.		
9	UNIT-IX: Speech and spoken Exchanges; Extem-	10%	4
	pore:		
	Students will learn the correct usage of spoken language as		
	different from the written form. It will help the students		
	in extempore speech. This will be done by making the		
	students give variety of impromptu speeches in front of		
	the class: 1 minute talk on simple topics. To change the		
	average speakers in the class to some of the best Orator.		
10	UNIT-X: Book Review	10%	4
	The learners will identify the central idea of the book,		
	author's style and approach towards the book. This will		
	enable the learners to express their point of view and hone		
	their creativity and writing skills.		
11	UNIT-V: Activity Session	0%	2
	This will enhance the creative thinking among students.		
	To develop their interpersonal communication skills.		

^{*}Continuous Evaluation:It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

i. Text Books:

- 1. Understanding and Using English Grammar Betty Azar & Stacy Hagen; Pearson Education.
- 2. Business Correspondence and Report Writing SHARMA, R. AND MOHAN, $_{K}$
- **3.** Communication Skills Kumar S and Lata P; New Delhi Oxford University Press.
- **4.** Technical Communication: Principles and Practice, Sangeetha Sharma, Meenakshi Raman; Oxford University Press.
- 5. Practical English Usage MICHAEL SWAN.
- 6. A Remedial English Grammar for Foreign Student F.T. WOOD.
- 7. On Writing Well, William Zinsser; Harper Paperbacks,2006; 30th anniversary edition.
- 8. Oxford Practice Grammar, John Eastwood; Oxford University Press.

Semester 1 - 5

a. Course Name: Computational Thinking for Structured Design-1

b. Course Code: 303105104

c. Prerequisite: Requires Basic Knowledge of Computer.

d. Rationale: This course is design to provide basic ideas of computer programming. This course also makes help to understand programming language. It will help to develop their logical abilities.

e. Course Learning Objectives:

CLOBJ 1	Programming basics and the fundamentals of C.
CLOBJ 2	Data types in C.
CLOBJ 3	Mathematical and logical operations.
CLOBJ 4	Using if statement and loops.
CLOBJ 5	Arranging data in arrays.
CLOBJ 6	AImplementing pointers.

f. Course Learning Outcomes:

CLO 1	Able to understand the basic knowledge of Computer fundamental and its application in computers.
CLO 2	Able to understand the basic concepts of C programming language.
CLO 3	Able to design and develop various programming problems using C programming concepts.
CLO 4	Able to Implement advance C programming concepts like function, pointer, structure and union etc.
CLO 5	Able to understand the file handling using C Programming language.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	C	Interna	ıl Evalua	tion	en ESE		Total
				MSE	CE	P	Theory	P	Total
3	-	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr. No.	Topics	Weightage	Teaching Hours
1	UNIT-I: Introduction to C language History of C language, Program Development Steps, Structure of C program	10%	3
2	UNIT-II: Data Types, User I/O and Operators Data Types Extended and Derived Data types, Variables User I/O: Formatted, predefined Functions of stdio.h header file Operators: Types of operators, Precedence, Associativity.	10%	6
3	UNIT-III: Conditional Flow Statements: Iterative Statements, Jumping Statements and Pointors:Conditional Flow Statements: Simple if,ifelse,else-if ladder,switch case Decision Making using conditional statements Iterative Statements: Control Entry and Control Exit Loops Jumping Statements: break, continue, forward and backward goto. Pointers: Typed:single double,triplewild, NULL,Const, untyped, void.	15%	9
4	UNIT-IV: Functions: Functions: Call by value, call by references, Types of Functions. Pointer Functions: Calling A function through function pointer, Passing A function's address as an Argument to other function, Types of Pointer function Creation. Recursion: Types of Recursions: Direct Recursion, Indirect Recursion, Tail Recursion, No tail/Head Recursion, Tree Recursion, Nested Recursion. Storage classes: Auto, register, static and Extern.	30%	10
5	UNIT-V: Arrays: Arrays: Types of arrays, Declaration and Defining an array Pointer and Arrays: Types of Accessing Array elements Subscripting pointer variables Pointer to an array, Array of pointers, Pointers and two dimensional arrays Subscripting pointer To an array, Array of Functions: Strings: Strings v/s character arrays, Initializing strings, Reading and Displaying string Types of string format Specifiers. puts() functions, Multi Line string Input String pointers, Two-dimensional character arrays or array of string Array of pointers to strings, String handling functions.	35%	14

i. Text Books:

- 1. C Programing by Bala Guru Swamy (TextBook)
- 2. C for all by s.Thammarai Selvi ,R Murugesan, Anuradha Publications.
- 3. Programing in C Ajay Mittal, Pearson.

j. List of Practicals:

- 1. Installation C IDE, Basic Structure of C program. Format Specifiers, Escape Character. Run time input/Output Programs.
- 2. Write a c program to calculate Area of Rectangle, Perimeter of a Rectangle and Diagonal of a Rectangle.
- 3. The total distance traveled by vehicle in 't seconds is given by distance s = ut+1/2at? where 'u' and 'a' are the initial velocity (m/sec.) and acceleration(m/sec?). Write a C program to find the distance traveled at regular intervals of time given the values of 'u' and 'a'. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of 'u' and 'a'.
- 4. Write a C program to find the sum of individual digits of a positive integer.
- 5. A Fibonacci sequence is defined as follows: the first and second terms in the
- **6.** Write a C program to find the roots of a quadratic equation.
- **7.** Write C programs that use both recursive and non-recursive functions. 1. To find the factorial of a given integer.
- **8.** To find the GCD (greatest common divisor) of two given integers.
- 9. Write a C program to find the largest integer in a list of integers,
- 10. Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T
- 11. Write a C program to generate Pascal's triangle.
- 12. Write a C program to convert a Roman numeral to its decimal Equivalent.
- 13. Write a c program to take multiline string input and print individual string length .
- 14. Write a c program to reverse the individual word of a given string Explanation:input: Welcome To Bytexl output: emocleW oT lxetyB.

Semester 1 - 6

a. Course Name: Environmental Science

b. Course Code: 303104105

c. Prerequisite: Knowledge of Physics, Chemistry and Mathematics up to 12th science level and Biology up to 10th science level

d. Rationale: Basic knowledge of the environment is essential for all human beings for a good life and sustainable existence.

e. Course Learning Objectives:

CLOBJ 1	Apply systems thinking to analyze the city as a system, demonstrating application.
CLOBJ 2	Evaluate the role of smart citizens and approaches for citizen engagement.
CLOBJ 3	Identify sources and stressors of water resources, demonstrating understanding.
CLOBJ 4	Analyze the causes, effects, and control measures of population explosion.

f. Course Learning Outcomes:

CLO 1	Understand the interrelation and interdependency of organisms and their interactions with the environment.
CLO 2	Identify eco-friendly measures in engineering projects.
CLO 3	Understand preventive steps for environmental protection.
CLO 4	Act as a responsible individual who is aware of efficient usage of resources and securing sustainable development.

g. Teaching & Examination Scheme:

	Teachi	ng Sch	eme	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Interna	Internal Evaluation ESE				Total
				MSE	CE	P	Theory	P	Total
1	0	0	Audit	-	50	-	-	-	50

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: ENVIRONMENTAL HEALTH, ECOL-	25%	7
	OGY AND QUALITY OF LIFE		
	Environmental education: Objective and scope, Impact		
	of technology on the environment, Environmental disas-		
	ters: Case studies, Global environmental awareness to		
	mitigate stress on the environment, Structure and func-		
	tion of an ecosystem, Ecological pyramids, Pyramid of		
	number, Pyramid of energy and pyramid of biomass.		
2	UNIT-II: POLLUTION PREVENTION	20%	6
	Air & Noise pollution - Sources & their Effects, Case stud-		
	ies of Major Catastrophes, Structure and composition of		
	the atmosphere, Water, Soil, Marine, Thermal & Marine		
	Pollution: The story of fluoride contamination, Eutroph-		
	ication of lakes, control measures, Measuring water qual-		
	ity: Water quality index, Waste water treatment (gen-		
	eral) primary, secondary and tertiary stages, Municipal		
	Solid waste management: Sources and effects of munici-		
	pal waste, Biomedical waste, Hazardous waste.		
3	UNIT-III: POPULATION GROWTH, GLOBAL	25%	7
	ENVIRONMENTAL CHALLENGES & LATEST		
	DEVELOPMENTS		
	Population Explosion - Causes, Effects and Control, an		
	International initiative in population-related issues, Ur-		
	banization, Growth of the world's large cities, Water re-		
	sources: Sources of water, Stress on water resources, Cli-		
	mate Change, Global Warming and Green House Effect,		
	Acid Rain, Depletion of Ozone layer, Variation in concen-		
	trations of GHG gases in ambient air during last millen-		
	nium, Role of Environmental Information System (EN-		
	VIS) in India and similar programs run by EPA(USA),		
	Role of soft tools like Quantum GIS, Autodesk Building		
	Information Modeling (BIM) and City Finance Approach		
	to Climate-Stabilizing Targets (C- FACT), Life Cycle As-		
	sessment, Bioinformatics and Optimization tools for sus-		
	tainable development.		

4	UNIT-IV: SMART CITIES	30%	10
	Introduction to smart cities - about smart cities, what is		
	a smart city, world urbanization, case studies of Songdo,		
	Rio De Janeiro, what makes cities smart.		
	City as a system of systems – Introduction, systems think-		
	ing, Milton Keynes Future Challenges, Rich picture as city		
	challenges, Wicked problems, Development of smart city		
	approach – core elements, open data, sustainability, pri-		
	vacy and ethics, development processes.		
	Smart Citizens – their role, engaging citizens, IES Cities,		
	Energy systems, Approaches for Citizen Engagement, co-		
	creating smart cities, cities unlocked, living labs, city		
	problems, crowdsourcing ideas, redesigning cities for citi-		
	zens, all age-friendly cities, mobility on demand, motion		
	maps,		
	Infrastructure, Technology and Data – urban infrastruc-		
	ture and its technology, future of lighting, IoT, connected		
	objects, sensing the city, NOx eating paints and air quality		
	sensors, safest, smart citizen kit, sensing your city, Sen-		
	sored City, Cyber security for data power, open, shared		
	and closed data, satellite data, open data revolution,		
	Smart City Project Data.		
	Innovation – smart innovations, smart city ecosystem,		
	data-driven innovations for smart cities.		
	Standards and Capacity Building – the role of Standard,		
	BSI smart city Standards, HyperCat, ITU Smart Sustain-		
	able cities, Smart City Readiness, Lessons Learnt from		
	Amsterdam.		
	Smart Measurements - metrics and indicators, city indi-		
	cators, WCCD data portal, value proposition, integrated		
	reporting, smart city learning and education, urban data		

i. Text Books:

school.

- 1. Textbook of Environmental Studies For Undergraduate Courses (Text Book) By Dr Erach Bharucha Orient BlackSwan Second Edition, Pub. Year 2013.
- 2. Basics of Environmental Studies By U K Khare Tata McGraw Hill.
- ${\bf 3.}$ Environmental Studies By Anindita Basak Drling Kindersley(India)Pvt. Ltd Pearson.
- **4.** Environmental Sciences By Daniel B Botkin & Edward A Keller John Wiley & Sons.
- **5.** Air Pollution M N Rao , H .V N Rao McGraw Hill Publishing Company Limited, New Delhi.

Semester 2 - 1

a. Course Name: Computational Thinking for Structured Design-2

b. Course Code: 303105151

c. Prerequisite: A foundational understanding of logic and problem-solving is a prerequisite for computational thinking in structured design.

d. Rationale: Computational thinking is integral for structured design as it fosters a systematic approach to problem-solving, breaking down complex issues into manageable components. By applying computational thinking principles, individuals can create well-organized and efficient structured designs, promoting clarity, maintainability, and scalability in software development. This methodology aligns with the logical and stepby-step nature of structured design, enhancing the overall effectiveness of the development process.

e. Course Learning Objectives:

CLOBJ 1	Develop a deep understanding of foundational computational thinking concepts and their application in problem-solving.
CLOBJ 2	Demonstrate proficiency in creating structured designs using appropriate programming constructs and methodologies.
CLOBJ 3	Apply algorithmic thinking to decompose complex problems into manageable components, enhancing systematic problem-solving abilities.
CLOBJ 4	Evaluate and refine structured designs through critical analysis, promoting clarity, efficiency, and scalability in software solutions.

f. Course Learning Outcomes:

CLO 1	Develop proficiency in breaking down complex problems into manageable components, demonstrating a mastery of foundational computational thinking concepts.
CLO 2	Apply structured design principles to create efficient and well-organized algorithms, fostering a systematic approach to problem-solving in various domains.
CLO 3	Demonstrate the ability to design and implement structured programs using appropriate programming languages, showcasing practical skills in translating algorithms into executable code.
CLO 4	Cultivate a problem-solving mindset, emphasizing analytical thinking, algorithmic reasoning, and code optimization for developing scalable and maintainable software solutions.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Internal Evaluation I			ESE		Total
				MSE	CE	P	Theory	P	Total
3	-	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I Dynamic Memory Allocation:	10%	6
	malloc, calloc, realloc and free, Array of pointers, Pro-		
	graming Applications, Dangling Pointer		
2	UNIT-II Preprocessor Directives:	10%	6
	File Inclusion, Macros, Conditional Compilation and		
	Pragmas.		
3	UNIT-III: Enumerators, Structures, Unions:	15%	15
	Enumerators: Enumerator Types Structures: Decla-		
	ration Initialization Accessing Structures, Complex Struc-		
	tures, Structure and Functions Array of structures Arrays		
	within structures Anonymous structures Nested structures		
	pointers in structures Self-referential structures Structure		
	Padding Unions: Bit fields Typedef		
4	UNIT-IV: Searching and Sorting:	30%	3
	Selection sort, Bubble Sort, ,Insertion sort, Quick sort		
	and Merge Sort Linear and Binary Searching Techniques		
5	UNIT-V: Data Structures: List- Linear List: :	35%	15
	Singly Linked List - CRUD operations Double Linked		
	List -CRUD operations Circular Linked List- CRUD op-		
	erations		

i. Text Books:

- 1. Fundamentals of Data Structures in C, 2ND eDITION, E.Horowitz, S,.Sahni and Susan Anderson- Freed, Universities Press (TextBook)
- ${\bf 2.}$ Computer Programming & Data Structures E. Balaguruswamy,4th Edition TMH
- ${\bf 3.}\ {\rm C}\ \&\ {\rm Data\ Structures}$ P . Padmanabham, Third Edition,
B.S Publications
- 4. Classic Data Structures D.samanta

j. List of Practicals:

- 1. Write a c program to increase or decrease the existing size of an 1D array. 2. Write a c program on 2D array to Increase & Decrease i) No of subarrays ii) elements in the subarrays.
- 2. Write a to display present date and time using c language. 2. Write a c program to demonstrate pre-processor directives i) Macros ii) Conditional Compilation.
- 3. Write a C program that uses functions to perform the following Operations.
 i) Reading a complex number ii) Writing a complex number iii) Addition of two complex numbers iv) Multiplication of two complex numbers 2. Write a c program to store records of n students based on roll_no, name, gender and 5 subject marks i) Calculate percentage each student using 5 subjects. ii) Display the student list according to their percentages.
- 4. Write a C program to store n employee records based on EMP_ID,EMP_NAME,EMP_DEPTID,EMP_PHNO,EMP_SALARY and display all the details of employees using EMP_NAME in sorted order.
- 5. Write a c program to implement selection Sort & Bubble sort 2. Write a C program to reverse the elements within a given range in a sorted list. Example: input: 109124346781038 output: 12876443910 the sorted list of given array elements is 12344678910, after reversing the elements with in the range 3 and 8 is 12876443910.
- 6. Write a c program to implement Insertion sort & Quick sort
- 7. Write a c program to sort the given n integers and perform following operations i) Find the products of every two odd position elements ii) Find the sum of every two even position elements Explanation: Input: 9 1 9 8 3 5 4 7 2 6 Output: 3 15 35 63 6 10 14 The sorted list of given input is 1 2 3 4 5 6 7 8 9, the product of alternative odd position elements is 1*3 = 3,3*5=15,5*7=35... and the sum of two even position elements 2+4=6,4+6=10.
- 8. Write a C Program to implement Merge Sort.
- **9.** Write a c program to sort in ascending order and reverse the individual row elements of an mxn matrix.
- 10. Write a c program to perform linear Search. 2. Write a c program to perform binary search.
- 11. Write a c program to Create a single Linked list and perform Following Operations A. Insertion At Beginning B. Insertion At End C. Insertion After a particular node D. Insertion Before a particular node E. Insertion at specific position F. Search a particular node G. Return a particular node H. Deletion at the beginning I. Deletion at the end J. Deletion after a particular node K. Deletion before a particular node L. Delete a particular node M. Deletion at a specific position.
- 12. Write a program to Reverse a singly Linked list. 2. Write a c program to check whether the created linked list is palindrome or not.
- 13. Write a c program to Create a Circular Linked list and perform Following Operations A. Insertion At Beginning B. Insertion At End C. Insertion After

- a particular node. D. Insertion Before a particular node E. Insertion at specific position F. Search a particular node G. Return a particular node H. Deletion at the beginning I. Deletion at the end J. Deletion after a particular node K. Deletion before a particular node L. Delete a particular node M. Deletion at a specific position
- 14. Write a c program to Create a Circular single Linked list and perform Following Operations A. Insertion After a particular node B. Insertion Before a particular node C. Search a particular node D. Return a particular node E. Deletion before a particular node F. Delete a particular node.
- 15. Write a c program to Create a Circular Double Linked list and perform Following Operations A. Insertion After a particular node B. Insertion Before a particular node C. Search a particular node D. Return a particular node E. Deletion before a particular node F. Delete a particular node.

Semester 2 - 2

a. Course Name: ICT workshop

b. Course Code: 303107152

c. Prerequisite: Basic Computer Knowledge and Physics

d. Rationale: This course is design to provide basic knowledge of Electronics components and computer components. This course helps in learning problem solving process of Electronics circuits and Computer.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with identifying the Basic Electronic Components.
CLOBJ 2	Solve problems related to testing instruments such as Digital Multi meter, CRO , and function generator, etc.
CLOBJ 3	Acquire knowledge of Different sensors.
CLOBJ 4	Understand and develop group projects using electronic components and sensors.

f. Course Learning Outcomes:

CLO 1	Gain ability to understand the working of Electronics Components
CLO 2	Ability to understand the operating of various testing and measurement instrumentation.
CLO 3	Ability to learn working and use of different IoT sensors
CLO 4	Ability to design electronic circuit for the specific applications.

g. Teaching & Examination Scheme:

T	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	C	Internal Evaluation			ESE		Total
				MSE	CE	P	Theory	P	Total
0	-	2	1	-	-	20	-	30	50

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. List of Practicals:

- 1. Identification and symbolic representation of electronics basic components. (diode, zener diode, LED, transistor)
- 2. Verify the circuit analysis (voltage and current) using Digital Multimeter
- 3. Understanding of working and specifications of CRO and Function generator
- 4. Design 5V power supply using 7805.
- **5.** Understanding soldering techniques and practicing proper soldering and desoldering.
- **6.** Demonstrate the working of Temperature Sensor
- 7. Verify the functionality of water flow sensor
- 8. Verify the functionality of distance measurement sensor
- 9. Demonstrate the working of Rain detector Sensor.
- 10. Group Project based on electronics components and sensors

Semester 2 - 3

a. Course Name:a. Mastering Kali Linux and OSINT

b. Course Code: 303105154

c. Prerequisite: Basic Computer Skills, Programming/Scripting Knowledge, Virtualization

d. Rationale: a. Kali Linux provides a comprehensive suite of tools specifically tailored for penetration testing, ethical hacking, and security auditing. These tools assist cybersecurity professionals in identifying vulnerabilities, testing systems for weaknesses, and assessing the overall security posture of networks and applications.OSINT serves as a valuable source of information from publicly available sources. It enables organizations, governments, and individuals to collect data from diverse channels, including social media, websites, public databases, and news sources, providing a broad perspective on various subjects.

e. Course Learning Objectives:

CLOBJ 1	Gain a comprehensive understanding of Kali Linux, its architecture, command-line interface, and core functionalities essential for penetration testing and OSINT activities.
CLOBJ 2	Master a range of OSINT tools, methodologies, and techniques utilized for gathering, analysing, and interpreting information from diverse open sources, including social media, websites, and public databases.
CLOBJ 3	Acquire hands-on experience in conducting OSINT investigations, leveraging Kali Linux tools and methodologies to collect, analyze, and interpret data for reconnaissance, threat intelligence, and digital footprint analysis.
CLOBJ 4	Cultivate a mindset of continual learning and adaptation to stay updated with evolving OSINT tools, techniques, and cybersecurity trends, enabling professionals to adapt to new challenges in the field.

f. Course Learning Outcomes:

CLO 1	Recall and demonstrate commands and techniques for passive information gathering in Kali Linux and OSINT tools.
CLO 2	Interpret the intelligence process of OSINT, explaining the stages and goals involved in data collection and analysis.
CLO 3	Utilize Kali Linux tools and OSINT methodologies to conduct geolocation, reconnaissance, and security assessments in practical scenarios.
CLO 4	Analyze collected data from diverse sources using OSINT techniques, including reverse image searching, metadata analysis, and user information gathering.
CLO 5	Develop and construct comprehensive OSINT investigations on individuals, websites, and digital footprints using Kali Linux tools, presenting findings effectively.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
L	Т	P	C	Internal Evaluation			ESE		Total
				T	CE	P	Theory	P	Total
2	0	0	2	60	20	20	20	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: Getting Comfortable with Kali Linux	20%	9
	Booting Up Kali Linux, The Kali Menu, Kali Documen-		
	tation, The Kali Linux Official Documentation The Kali		
	Linux Support Forum the Kali Linux Tools Site. Find-		
	ing Your Way Around Kali: The Linux Filesystem, Basic		
	Linux Commands, Finding Files in Kali Linux, Managing		
	Kali Linux Services: SSH Service, HTTP Service		

2	UNIT-II: Searching, Installing, and Removing	20%	9
	Tools		
	apt update, apt upgrade, apt-cache search and apt show,		
	apt install, apt remove –purge, dpkg The Bash En-		
	vironment, Environment Variables Passive Information		
	Gathering: Website Recon, Whois Enumeration, Google		
	Hacking, Netcraft, Recon-ng, Open-Source Code Shodan,		
	Security Headers Scanner, SSL Server Test, Pastebin,		
	User Information Gathering, Email Harvesting, Password		
	Dumps, Social Media Tools ,Site-Specific Tools.		
3	UNIT-III: Foundations of OSINT	20%	9
	Overview of OSINT, The Intelligence Process of OSINT,		
	Creating and Understanding the OSINT Process Stages,		
	Goals of OSINT Collection, Setting Up an OSINT Plat-		
	form, Documentation, Sock Puppets, Data Analysis.		
4	UNIT-IV: OSINT	20%	9
	OSINT: Leveraging Search Engines- Harvesting Web		
	Data, File Metadata Analysis, Reverse Image Searching,		
	Image Analysis, Imagery and Maps, Language Transla-		
	tion The Dark Web OSINT: Business OSINT, Surface,		
	Deep, and Dark Webs, Overview of Several Dark Webs,		
	Tor, OSINT Automation, Breach Data, Report Genera-		
	tion, Reporting.		
5	UNIT-V: OSINT Investigations	20%	9
	Email Addresses, Usernames, Avatars and Image Search-		
	ing, Addresses and Phone Numbers, People Search En-		
	gines, Introduction to social media, Facebook, Twitter,		
	Geolocation, Website Investigations, WHOIS, DNS, IP		
	Addresses, Computer Infrastructure, Wireless OSINT.		

i. Text Books:

- 1. Gain a comprehensive understanding of Kali Linux, its role, and its applications in the field of cybersecurity. Effectively navigate the Kali Linux interface, access official documentation, and utilize support forums.
- 2. Familiarize oneself with the Kali Linux tools and resources available. Explore the Linux filesystem and grasp fundamental Linux commands.
- 3. Master the management of Kali Linux, including system updates, tool installation, software removal, and proficiency with the dpkg package manager. Manage Kali Linux services, including SSH and HTTP services.
- 4. Conduct effective website reconnaissance and gather valuable information. Utilize a wide range of tools and techniques for information gathering, including Whois enumeration, Google Hacking, Netcraft, Reconng, and Shodan.

j. List of Practicals:

- 1. Kali Linux Installation and Configuration: Set up a virtual machine or dual-boot system with Kali Linux. Familiarize yourself with the Kali Linux environment and essential tools.
- 2. Basic Command Line Usage: Familiarize yourself with basic command-line operations in Kali Linux. Practice commands like navigating directories, creating and deleting files, and managing permissions.
- 3. Network Scanning: Use tools like Nmap or Netdiscover to scan a local network for live hosts and open ports. Learn how to identify network services running on those ports.
- 4. Gathering Target Information: Identify the organization being targeted and gather publicly available information about its infrastructure, employees, and online presence using OSINT techniques. Utilize tools such as Maltego, the-Harvester, and Shodan to gather information.
- 5. MSocial Media Profiling: Choose a target individual or organization and conduct a comprehensive search on their social media platforms. Gather information such as personal details, connections, interests, or potential security risks
- **6.** Website and Domain Analysis: Select a website or domain of interest and analyze its structure, content, and metadata. Identify the hosting provider, IP addresses, domain ownership details, and any potential vulnerabilities.
- 7. Email Header Analysis: Obtain an email header from a sample email and analyze it to extract valuable information. Identify the source IP address, mail servers, and investigate any signs of email spoofing or malicious activity.
- 8. People Search and Background Checks: Choose an individual and perform a thorough people search using online search engines, public records, and directories. Compile information about their employment history, education, associations, or any notable events.
- 9. Geolocation and Mapping: Utilize geolocation tools to track the location of an IP address or a mobile device. Practice mapping techniques to visualize data and identify connections or patterns. Image and Video Analysis: Analyze images or videos found online to extract useful information. Utilize reverse image search engines and metadata analysis to identify the source, location, or context of the media.
- 10. Online Forum and Discussion Monitoring: Monitor and analyze discussions on online forums, social media groups, or public platforms related to a specific topic. Identify trends, opinions, or potential security threats by monitoring user conversations and interactions.
- 11. Open Database Research: Explore publicly available databases and repositories to gather information on specific topics or industries. Practice querying databases and extracting relevant data for analysis.
- 12. Deep Web Exploration: Familiarize yourself with tools like Tor and explore hidden services and websites on the dark web. Practice navigating through Tor networks and understanding the unique challenges of gathering OSINT in this environment.

13. OSINT Automation: Learn to leverage OSINT automation tools like Maltego, Recon-ng, or SpiderFoot for efficient data gathering and analysis. Explore the capabilities of these tools and customize them for specific OSINT tasks. Public Records Research: Dive into public records databases and government websites to collect information on individuals or organizations. Practice searching for property records, court cases, business registrations, or other publicly accessible data sources.

Semester 2 - 4

a. Course Name: Mathematics-II

b. Course Code: 303191151

c. Prerequisite: Knowledge of Mathematics up to 12th science level

d. Rationale: The Mathematics I syllabus integrates fundamental calculus concepts, advanced mathematical techniques, and matrix algebra, preparing students for engineering challenges with optimized problem-solving skills.

e. Course Learning Objectives:

CLOBJ 1	Define and identify ordinary differential equations of higher order. Classify ODEs based on homogeneity and linearity. Solve homogeneous linear ODEs of higher order with constant coefficients, and variable coefficients.
CLOBJ 2	Solve homogeneous linear ODEs of higher order with constant coefficients, variable coefficients
CLOBJ 3	Apply the Method of Undetermined Coefficients to solve nonhomogeneous ODEs. Utilize the Solution by Variation of Parameters for solving nonhomogeneous ODEs. Explore applications of ODEs in real-world scenarios.
CLOBJ 4	Understand power series solutions for ordinary points and regular singular points. Explore properties and applications of Legendre polynomials and Bessel functions.
CLOBJ 5	Define Laplace transform and its inverse. Understand the linearity property of Laplace transforms. Solve ordinary differential equations using Laplace transforms.

f. Course Learning Outcomes:

CLO 1	Demonstrate the ability to translate physical or engineering problems into mathematical equations and solve them.
CLO 2	Develop analytical and critical thinking skills through the process of solving complex mathematical problems.
CLO 3	Understand and interpret mathematical solutions in the context of the given problems.
CLO 4	Communicate mathematical concepts and solutions clearly and effectively, both in written and verbal forms.
CLO 5	Present mathematical arguments and solutions in a logical and organized manner.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
L	T	P	C	Internal Evaluation ESE				Total	
				MSE	CE	P	Theory	P	Total
4	-	-	4	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT 1: Higher order ordinary differential equations: Ordinary differential equations of higher orders, Homogeneous Linear ODEs of Higher Order, Homogeneous Linear ODEs with Constant Coefficients, Euler—Cauchy equations, Nonhomogeneous ODEs, Method of Undetermined Coefficients, Solution by Variation of Parameters, Applications	8%	5
2	UNIT 2 Power Series: Power series solutions at ordinary point and regular singular point; Legendre polynomials, Bessel functions of the first kind and their property	15%	9
3	UNIT 3 Laplace Transform: UNIT 3 Laplace Transform: Laplace Transform and inverse Laplace transform, Linearity, First Shifting Theorem (s-Shifting), Transforms of Derivatives and Integrals, ODEs, UNIT Step Function (Heaviside Function), Second Shifting Theorem (t-Shifting), Laplace transform of periodic functions, Short Impulses, Dirac's Delta Function, Convolution, Integral Equations, Differentiation and Integration of Transforms, Solution of ordinary differential equation by Laplace transform	25%	15
4	UNIT 4 Fourier Integral: Fourier Integral, Fourier Cosine Integral and Fourier Sine Integral	17%	10
5	UNIT 5 Vector Calculus: Gradient of scalar field, Directional Derivative, Divergence and curl of Vector field, Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.	10%	6

6	UNIT 6 Multivariable Calculus (Integration):	25%	15
	Multiple Integration: Double integrals (Cartesian),		
	change of order of integration in double integrals, Change		
	of variables (Cartesian to polar), Triple integrals (Carte-		
	sian)		

i. Text Book and Reference Book:

- 1. Advanced Engineering Mathematics (TextBook) By Erwin Kreyszig Willey India Education
- **2.** Calculus with early transcendental functions By James Stewart Cengage Learning
- 3. Higher Engineering Mathematics By B. S. Grewal Khanna Publications
- 4. Calculus and Analytic Geometry (TextBook) By G.B. Thomas and R.L. Finney — Addison Wesley A text book of Engineering Mathematics By N.P. Bali and Manish Goyal — Laxmi Publications

Semester 2 - 5

a. Course Name: Advanced Communication & Technical Writing

b. Course Code: 303193152

c. Prerequisite: Knowledge of English Language studied till 12th standard

d. Rationale: Communication confidence laced with knowledge of English grammar

is essential for all engineers.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with electrical current, potential difference, power and energy, sources of electrical energy and elements of electrical circuit.
CLOBJ 2	Solve problems related to Alternating current, alternating voltage, etc, Demonstrate a clear understanding of Pure R, L C circuit and combination of RLC, Series and Parallel combination of R, L and C, etc.
CLOBJ 3	Acquire knowledge of the resistor, capacitor, and inductor and their performance characteristics for series and parallel connections.
CLOBJ 4	Understand different single phase and three phase circuits.
CLOBJ 5	Demonstrate a clear understanding of the basic concepts, working principles and applications of transformer, DC machines and AC machines.
CLOBJ 6	Study the use of LT Switchgear, Fuse, MCB, ELCB etc.

f. Course Learning Outcomes:

CLO 1	Develop four basic skills
CLO 2	Construct grammatically correct sentences.
CLO 3	Develop and deliver professional presentation skills.
CLO 4	Develop the skills of critical thinking.
CLO 5	Compare different types of written communication.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Interna	l Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	100a1
0	2	0	2	0	100	0	0	0	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; \mathbf{MSE} - Mid-Semester Evaluation; \mathbf{CE} - Continuous Evaluation; \mathbf{ESE} - End Semester Examination

Sr. No.	Topics	Weightage	Teaching Hours
1	UNIT-I: Developing Effective Listening Skills:	10%	2
	To help students understand the meaning and importance		
	of good listening skills, learning the traits of being a good		
	listener through activity and listening audio tracks		
2	UNIT-II: Error analysis:	10%	4
	To provide insights into the complicated processes of lan-		
	guage development as well as a systematic way for iden-		
	tifying, describing and explaining errors. (Tenses, Voices,		
	Reported speech)		
3	UNIT-III: Delivering different types of speeches:	10%	2
	Students will understand and use the different patterns		
	for structuring speeches, Welcome / Introductory speech		
	Vote of Thanks speeches, Farwell speeches .		
4	UNIT-IV: Professional Presentations	10%	5
	: Students will learn Combating stage fright, Preparing		
	power point presentation Delivering PPT.		
5	UNIT-V: Essay writing	10%	4
	: Students will overcome the common pitfalls in the task		
	of essay writing by understanding, Basics of Paragraph de-		
	velopment and paragraph jumble, Types of essays, Char-		
	acteristic features of essays, Guiding Principles.		
6	UNIT-VI: Reading Comprehension:	10%	2
	: Employing Different Reading Skills, Activity, Practice		
7	UNIT-VII: Project Proposal:	5%	2
	To equip students with the various elements required to		
	prepare a winning proposal.		
8	UNIT-V: Misplaced Modifiers	5%	1
	Students will understand how to place the improperly sep-		
	arated word, phrase or clause from the word it describes.		

9	UNIT-IX: Movie Review:	10%	2
	A movie show followed by writing a review. To provide an		
	exposure to students how to express their opinions about		
	some film or documentary with unbiased and objective		
	approach.		
10	UNIT-X: Narrative Writing:	5%	2
	Narrative writing helps them explore different characters		
	and settings. To help students clarify their thinking, and		
	teach them to express that in writing in an organized way.		
11	UNIT-XI: Activity Session	10%	2
	Process of writing, Order of writing, Final draft & checklist		
	for reports, Sample reports, Memorandum, Letter report		
12	UNIT-XII: Critical Thinking	5%	1
	Need, relevance and Significance of Critical Think-		
	ing,Logic in problem solving and decision mak-		
	ing(activities), Moral Reasoning (Case Studies)		
13	UNIT-XIII: Activity Session (Presentation)	0%	1
	An activity where the scene of a press conference is cre-		
	ated in the class. Students are encouraged to ask sharp		
	questions and in turn are invited to assume roles of famous		
	personalities, thus answering the questions posed.		

^{*}Continuous Evaluation:It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

i. Text Books:

- 1. Business Correspondence and Report Writing SHARMA, R. AND MOHAN, K.
- 2. Communication Skills Kumar S and Lata P; New Delhi Oxford University Press Practical English Usage MICHAEL SWAN
- 3. A Remedial English Grammar for Foreign Student F.T. WOOD\
- 4. On Writing Well William Zinsser; Harper Paperbacks, 2006; 30th anniversary edition
- 5. Oxford Practice Grammar, John Eastwood; Oxford University Press Technical Communication : Principles And Practice Sangeetha Sharma, Meenakshi Raman; Oxford University Press

Semester 2-6

a. Course Name: Global Certifications - Fundamentals (Azure)

b. Course Code: 303105153

c. Prerequisite: Possess a fundamental understanding of cloud computing concepts and services. Familiarity with basic networking principles and a working knowledge of operating systems is recommended.

d. Rationale: Azure provides a comprehensive cloud platform by Microsoft, offering scalable and flexible computing resources for businesses. With a vast array of services, Azure facilitates seamless deployment, management, and scaling of applications. Its global presence and integration with various tools make it a versatile and reliable choice for organizations seeking efficient cloud solutions.

e. Course Learning Objectives:

CLOBJ 1	Develop a foundational understanding of cloud computing principles, exploring key concepts such as virtualization, scalability, and resource provisioning.
CLOBJ 2	Gain familiarity with a diverse range of Azure services, enabling the ability to assess and leverage appropriate tools for different cloud-based scenarios.
CLOBJ 3	Acquire knowledge of Azure security features, including identity and access management, encryption, and compliance, to ensure the implementation of robust and secure cloud solutions.
CLOBJ 4	Understand Azure Service Level Agreements (SLAs) and the lifecycle of Azure services, allowing for informed decision-making, efficient resource management, and adherence to service quality commitments.

f. Course Learning Outcomes:

CLO 1	Understand the principles of cloud computing.
CLO 2	Familiarity with the various Azure services.
CLO 3	Understanding the Azure security features.
CLO 4	Understanding Azure Service Level Agreements (SLAs) and the Azure service lifecycle.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Interna	l Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
2	0	0	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Cloud Concepts: Understanding cloud computing prin-	15%	4
	ciples, such as the different types of cloud models (pub-		
	lic, private, hybrid), infrastructure-as-a-service (IaaS),		
	platform-as-a-service (PaaS), and software-as-a-service		
	(SaaS).		
2	Azure Services: Familiarity with the various Azure ser-	20%	6
	vices and their common use cases. This includes ser-		
	vices like Azure Virtual Machines, Azure App Services,		
	Azure Storage, Azure Functions, Azure SQL Database,		
	and more.		
3	Security, Privacy, Compliance, and Trust: Knowl-	20%	6
	edge of Azure security features, identity and access man-		
	agement, Azure Active Directory, data protection, compli-		
	ance frameworks, and Azure governance methodologies.		
4	Azure Pricing and Support: Understanding Azure	15%	4
	subscription options, cost management, pricing models,		
	and the different support options available to Azure cus-		
	tomers.		
5	Azure SLA and Service Lifecycles: Familiarity with	30%	10
	Azure Service Level Agreements (SLAs) and the Azure		
	service lifecycle, including planned maintenance, updates,		
	and deprecation policies.		

i. Reference Books:

- 1. "Microsoft Azure Fundamentals: Understanding Azure" by Michael Collier and Robin Shahan 3rd Edition
- 2. "Azure for Architects: Implementing cloud design, DevOps, containers, IoT, and serverless solutions on your public cloud" by Ritesh Modi 2nd Edition
- 3. "Exam Ref AZ-900 Microsoft Azure Fundamentals" by Jim Cheshire 2nd Edition

Semester 2-7

a. Course Name: Electrical and Electronics Engineering

b. Course Code: 303106103

c. Prerequisite: Knowledge of Physics and Mathematics up to 12th science level.

d. Rationale: The course provides introductory treatment of the field of Electrical Engineering to the students of various branches of engineering.

e. Course Learning Objectives:

CLOBJ 1	Master analysis techniques including Kirchhoff's laws, simplification methods, superposition, Thevenin's, and Norton's theorems for effective DC circuit analysis.
CLOBJ 2	Solve problems related to Alternating current, alternating voltage, etc, Demonstrate a clear understanding of Pure R, L C circuit and combination of RLC, Series and Parallel combination of R, L and C, etc.
CLOBJ 3	Understand different single phase and three phase circuits.
CLOBJ 4	Learn diode behaviours, rectification techniques, and transistor functions as switches and amplifiers in electronic circuits.
CLOBJ 5	Understand sensors and transducers, their applications, and differentiate between their types and functionalities in electronic systems.

f. Course Learning Outcomes:

CLO 1	UTo Illustrate basic concepts of various laws, principles and theorems associated with DC circuits for networks analysis.
CLO 2	To apply concepts of sinusoidal voltages, power relationships and show-casing knowledge of AC circuit theory using numerical and graphical representation.
CLO 3	To Compare and apply diode and transistor fundamentals, including characteristics, operation, and applications, demonstrating awareness of electronics principles.
CLO 4	To design, and implement various types of voltage regulator circuits, and understanding of power supply concepts and practical applications.
CLO 5	To adept, classify, and apply various electronic sensors and transducers, for understanding of their principles and real-world applications.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Interna	ıl Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
3	-	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: DC Circuits	10%	5
	Electrical circuit elements (R, L and C), voltage and cur-		
	rent sources, Kirchhoff current and voltage laws, Mesh		
	and Node analysis, Simplifications of networks using se-		
	ries and parallel combinations and star-delta conversions.		
	Superposition, Thevenin and Norton Theorems		
2	UNIT-II: AC Circuits	30%	15
	AC Circuits Sinusoidal voltages and currents, their math-		
	ematical and graphical representation, Concept of instan-		
	taneous, peak (maximum), average and R.M.S. values, fre-		
	quency, cycle, period, peak factor and form factor, phase		
	difference, lagging, leading and in phase quantities and		
	phasor representation. Rectangular and polar represen-		
	tation of phasors, pure inductance, pure capacitance and		
	corresponding voltage- current phasor diagrams and wave-		
	forms. Development of the concept of reactance, the		
	study of series R-L, R-C, R-L-C circuit and resonance,		
	study of parallel R-L, R-C and R-L-C circuit, concept of		
	impedance, admittance, conductance and susceptance, the		
	concept of active, reactive and apparent power and power		
	factor,. Voltages, currents and power relations three-phase		
	have balanced star-connected loads and delta-connected		
	loads along with phasor diagrams.		

3	UNIT-III: Diode and Transistors	30%	15
	Introduction to Ideal Diode, Effect of temperature Ideal		
	diodes, unbiased diode and Forward and reverse bias of		
	Diode. PIV, surge current, Diode as Uncontrolled switch.		
	Rectifiers: Half wave, Full wave, and bridge wave. Ripple		
	factor, PIV rating. Choke and Capacitor input filter rec-		
	tifiers, Clipper and Clamper circuits, Voltage multiplier:		
	Construction and working of BJT, Characteristics & spec-		
	ifications of BJT (PNP & NPN transistors), Biased and		
	unbiased BJT, Configuration of the transistor, the concept		
	of gain & BW, Operation of BJT in the cut-off, saturation		
	& active regions (DC analysis), BJT as a switch, Transis-		
	tor as an amplifier, Voltage divider bias and analysis, VDB		
	load line and Q point.		
4	UNIT-IV: Voltage Regulator	15%	5
	Lasers: Interaction of radiation with Matter, Absorption,		
	Spontaneous and Stimulated emission, Characteristics of		
	Lasers, Types of Lasers: Ruby Laser, Helium-Neon Laser,		
	Semiconductor Diode Laser, Applications of Lasers. Fiber		
	Optics: Principle and Structure of Optical Fiber, Numeri-		
	cal Aperture of fiber, Types of Optical Fibers, Attenuation		
	in Optical Fibers, Applications of Optical Fibers.		
5	UNIT-V: Sensors and Transducers	15%	5
	Introduction to sensors and Transducers, Comparison be-		
	tween sensors and Transducers, Applications of Sensors		
	and Transducers, Types of Electronic sensors, Types of		
	Transducers.		

i. Text Books:

- 1. A text book of Electrical technology Vol2, By B.L.Theraja S. Chand Publication.
- **2.** Electrical Engineering Fundamentals (TextBook), By V. D. Toro Prentice Hall India 2, Pub. Year 1989.
- **3.** Electrical and Electronics Technology , By E. Hughes Pearson 10, Pub. Year 2010.
- **4.** Basic Electrical Engineering , By D. P. Kothari and I. J. Nagrath, Tata McGraw Hill 3, Pub. Year 2010.
- **5.** Basic Electrical Engineering, By D. C. Kulshreshtha McGraw Hill 1, Pub. Year 2009.
- **6.** Fundamentals of Electrical Engineering, By Leonard S. Bobrow Oxford University Press 2, Pub. Year 1996.

j. List of Practicals:

- 1. To Study about Various Electrical and Electronics Symbols and demonstrate various measuring instruments used in Basic electrical Engineering laboratory.
- 2. To Perform and Solve Electrical Networks with Series and Parallel Combinations of Resistors Using Kirchhoff's Laws.
- **3.** To Obtain Inductance, Power and Power Factor of the Series RL Circuit With AC Supply Using Phasor Diagram.
- **4.** To Obtain Capacitance, Power and Power Factor of the Series RC Circuit With AC Supply Using Phasor Diagram.
- **5.** To Obtain Inductance, Capacitance, Power and Power Factor of the Series R-L-C Circuit With AC Supply Using Phasor Diagram.
- **6.** Verification of superposition theorem with dc source.
- 7. Verification of Thevenin's theorem with dc source.
- 8. Verification of Norton's theorems in dc circuits.
- **9.** Verification of Current and Voltage Relations in Three Phase Balanced Star and Delta Connected Loads.
- 10. To study the cut-section of a dc machine, single phase induction machine and three phase induction machine.
- 11. Find out the Efficiency and Voltage Regulation of Single Phase Transformer by Direct Load Test.
- 12. To Plot V-I characteristics Diodes. (a) PN junction diode Characteristics, (b) Zener Diode characteristics.
- 13. To Observe Rectifier Circuit (a) Half wave Rectifier without filter, (b) Full wave rectifier without filter, (c) Half wave
- 14. To Observe Response of Clipping and Clamping circuits using diodes (a) Diode Positive Clipper without and with Biased clipper, (b) Diode Negative Clipper without and with Biased clipper, (c) Biased Positive Negative Clipper (Combinational Clipper), and (d) Positive Clamper, and Negative Clamper.
- 15. Designing of power supply using IC regulator circuit. (a) Designing of +5 Volt DC Power Supply using 7805, (b) Designing of -5 Volt DC Power Supply using 7905, (c) Designing of +12 Volt DC Power Supply using 7812, and (d) Designing of -12 Volt DC Power Supply using 7912.
- **16.** (a) To Plot and Study input-output characteristics of Common Base (B) configuration of the Transistor and (b) To Plot and Study input-output characteristics of common Emitter (CE) configuration of Transistor.
- 17. To study the Voltage divider bias circuit: (a) To observe the effect of change in base current on the Q-operating point, and (b) To set Q point for operation of a transistor amplifier in the linear region.
- **18.** To plot characteristics of Schottky and Varactor diode.
- 19. Designing of Linear Adjustable Regulator using IC LM317.
- 20. Introduction to Sensors and Transducers.

Semester 3 - 1

a. Course Name: Design of Data Structure

b. Course Code: 303105201

c. Prerequisite: Computer Programming and Basic Syntaxes

d. Rationale: Data structure is a subject of primary importance in Information and Communication Technology. Organizing or structuring data is important for implementation of efficient algorithms and program development. Efficient problem solving needs the application of appropriate data structure during program development.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with Principles of OSS, Open-Source Standards, Requirements for Software, OSS success, Free Software, Examples, Licensing, Free Vs. Proprietary Software, Free Software Vs. Open-Source Software, Public Domain.
CLOBJ 2	Acquire Knowledge regarding Open-Source History, Open Source Initiatives, Open Standards Principles, Methodologies, Philosophy, Software freedom, Open-Source Software Development, Licenses, Copyright vs. Copy left, Patents, Zero marginal cost, Income-generation Opportunities, Internationalization
CLOBJ 3	Acquire knowledge of Community and Communication, Contributing to Opensource Projects Introduction to GitHub, interacting with the community on GitHub, Communication and etiquette, testing open-source code, reporting issues, contributing code. Introduction to Wikipedia, contributing to Wikipedia or contributing to any prominent open-source project of student's choice. Open-Source Ethics and Social Impact: Open source vs. closed source, Open-source Government, Ethics of Opensource,
CLOBJ 4	Understand GNU/Linux, Android, Free BSD, Open Solaris. Open-Source Hardware, Virtualization Technologies, Containerization Technologies: Docker, Development tools, IDEs, Debuggers, Programming languages, LAMP, Open-Source Database technologies
CLOBJ 5	Demonstrate apache Web server, BSD, GNU/Linux, Android, Mozilla (Firefox), Wikipedia, Drupal, WordPress, Git, GCC, GDB, GitHub, Open Office, LibreOffice Study

f. Course Learning Outcomes:

CLO 1	Use different types of data structures, operations and algorithms.
CLO 2	Apply searching and sorting operations on files
CLO 3	Use stack, Queue, Lists, Trees and Graphs in problem solving.
CLO 4	Implement all data structures in a high-level language for problem solving.

g. Teaching & Examination Scheme:

Te	Teaching Scheme				Evaluation Scheme				
L	T	P	C	Interna	Internal Evaluation ESE				Total
				MSE	CE	P	Theory	P	Total
3	0	4	5	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Introduction: Data Structures, Classifications (Primi-	10%	6
	tive & Non-Primitive), Data structure Operations, Re-		
	view of Arrays, Structures, Self-Referential Structures,		
	and Unions. Pointers and Dynamic Memory Allocation		
	Functions. Representation of Linear Arrays in Memory,		
	dynamically allocated arrays. Performance analysis of an		
	algorithm and space and time complexities		
2	Stacks, Recursion and Queue: Stacks: Definition,	15%	8
	Stack Operations, Array Representation of Stacks, Stacks		
	using Dynamic Arrays, Stack Applications: Polish no-		
	tation, Infix to postfix conversion, evaluation of postfix		
	expression. Recursion - Factorial, GCD, Fibonacci Se-		
	quence, Tower of Hanoi, Queues: Definition, Array Rep-		
	resentation, Queue Operations, Circular Queues, Circular		
	queues using Dynamic arrays, Deque, Priority Queues and		
	its problems		

3	Linked Lists: Definition, Representation of linked lists in	10%	5
	Memory, Memory allocation; Garbage Collection. Linked		
	list operations: Traversing, Searching, Insertion, and Dele-		
	tion. Doubly Linked lists, Circular linked lists, and header		
	linked lists. Linked Stacks and Queues. Applications of		
	Linked lists		
4	Searching and Sorting: Interpolation Search Sorts:	10%	5
	Selection Sort, Insertion Sort, Bubble Sort, Quick Sort,		
	Merge Sort, Radix Sort		
5	Trees: Terminology, Binary Trees, Properties of Binary	10%	4
	trees, Array and linked Representation of Binary Trees,		
	Binary Tree Traversals - In Order, Post Order, Pre Order;		
	Additional Binary tree operations. Threaded binary trees,		
	Binary Search Trees – Definition, Insertion, Deletion,		
	Traversal, Searching, Application of Trees-Evaluation of		
	Expression.		
6	Red Black Trees and AVL Trees: Introduction-	15%	8
	Operations on Red Black Trees, AVL tree Construction,		
	Operations on AVL Trees		
7	Hashing: Hash Table organizations, Hashing Functions,	15%	3
	Static and Dynamic Hashing		
8	Graphs: Definitions, Terminologies, Matrix and Adja-	15%	5
	cency List Representation of Graphs, Elementary Graph		
	operations, Traversal methods: Breadth First Search and		
	Depth First Search.		
	· ·		

i. Text Book and Reference Book:

- 1. Fundamentals of Data Structures in C, 2ND EDITION, E.Horowitz, S,.Sahni and Susan Anderson- Freed, Universities Press (TextBook)
- 2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

j. List of Practicals:

- 1. Implement Stack and its operations like (creation push pop traverse peek search) using linear data structure
- 2. Implement Infix to Postfix Expression Conversion using Stack.
- **3.** Implement Postfix evaluation using Stack.
- 4. Implement Towers of Hanoi using Stack.
- 5. Implement queue and its operations like enqueue, dequeue, traverse, search.
- **6.** Implement Single Linked lists and its operations(creation insertion deletion traversal search reverse).
- 7. Implement Double Linked lists and its operations(creation insertion deletion traversal search reverse).

- 8. Implement binary search and interpolation search.
- 9. Implement Bubble sort, selection sort, Insertion sort, quick sort, merge sort.
- 10. Implement Binary search Tree and its operations (creation, insertion, deletion).
- 11. Implement Traversals Preorder In-order Post-order on BST.
- 12. implement Graphs and represent using adjacency list and adjacency matrix and implement basic operations with traversals (BFS and DFS).

Semester 3 - 2

a. Course Name: Database Management System

b. Course Code: 303105203

c. Prerequisite: Basic Computer Knowledge

d. Rationale: The course will enable students to understand the different issues involved in the design and implementation of a database system as well execute various database queries using SQL.

e. Course Learning Objectives:

CLOBJ 1	Understand DBMS and FPS
CLOBJ 2	Study the use of DBMS language, SQL
CLOBJ 3	Acquire knowledge of the different types of Model and E-R Diagram.
CLOBJ 4	Understand different Data Models, Constraints and keys, and relational algebra Model
CLOBJ 5	Study the use of transaction, database recovery, concurrency control and deadlock
CLOBJ 6	Study the use of Query Processing
CLOBJ 7	Understand different relational database designs
CLOBJ 8	Acquire knowledge of the security
CLOBJ 9	Understand the PL/SQL practical

f. Course Learning Outcomes:

CLO 1	Understand basic concepts of Database
CLO 2	Understand Relational Models and their importance.
CLO 3	Build a properly structured database for a given problem or application.
CLO 4	Learn how various transactions are managed in real-time scenarios.
CLO 5	Understand the evaluation parameters of a query as well as the security parameters of the database.
CLO 6	Implement SQL concepts to build dynamic database applications.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
L	T	P	C	Internal Evaluation			ESE		Total
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Introduction: Introduction and applications of DBMS,	10%	3
	File Processing System and its limitations, ANSI/SPARC		
	Model, Data Independence, Client-Server Architecture,		
	Users & DBA, Database Architecture.		
2	SQL: Data Definition Language (DDL) commands, Data	10%	4
	Manipulation Language (DML) commands, Data Control		
	Language (DCL) commands, Transaction Control Lan-		
	guage (TCL) commands. Predicates & Clauses: Logi-		
	cal Operators (AND / OR), Relational Operators, BE-		
	TWEEN Predicate, IN & NOT IN Predicate, LIKE Pred-		
	icate. Functions in SQL: Aggregate Functions, Character		
	Functions, Arithmetic Functions, Date Functions, Conver-		
	sion Functions.		
3	Data Models: Hierarchical Model, Network Model, Re-	10%	5
	lational Model, Object-Oriented Model. E-R Diagram:		
	Introduction to E-R Diagram, Entities, Attributes & its		
	types, Relationships, Mapping Cardinalities, Participa-		
	tion Constraints, Weak Entity Sets, Specialization, Gen-		
	eralization, Aggregation.		
4	Relational Data Model: Introduction, Degree, Cardi-	10%	4
	nality. Constraints & Keys: Primary Key, Foreign Key,		
	Super Key, Candidate Key, Not Null Constraint, Check		
	Constraint. Relational Algebra Operations: Selec-		
	tion, Projection, Cross-Product, Rename, Joins (Natural		
	& Outer Join), Set Operators (Union, Intersection, Set		
	Difference), Aggregate Functions.		

5	Relational Database Design: Functional Dependency	20%	6
	– definition, trivial and non-trivial FD, Armstrong's Ax-		
	ioms/Inference Rules, Closure of FD, Closure of At-		
	tributes, Candidate Key, Finding a Candidate Key, De-		
	composition (Lossy & Lossless), Database Anomalies,		
	Normalization – 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.		
6	Transaction: Introduction, ACID Properties, Transac-	20%	12
	tion Life Cycle, Scheduling, Serial Schedule, Interleaved		
	Schedule, Transaction Operations, Serializability (View &		
	Conflict), Two-Phase Commit Protocol. Database Re-		
	covery: Introduction, Log Based Recovery, Shadow Pag-		
	ing, Checkpoints. Concurrency Control: Introduction,		
	Lock Based Protocol, Two Phase Lock Protocol, Inten-		
	tion Locking, Multiple Granularity, Time-based Protocol.		
	Deadlock: Introduction, Deadlock Detection, Deadlock		
	Recovery, Deadlock Prevention (Wait-Die, Wound-Wait &		
	Timeout-Based Approach).		
7	Query Processing: Introduction, Layers of Query Pro-	10%	3
	cessing, Measures of Query Cost, File Scans (Linear &		
	Binary Search), Materialized View, Pipelining. Query		
	Optimization: Introduction, Equivalence Rules, Cost-		
	Based Query Optimization.		
8	Security: Data Security, Data Integrity, Authentication,	5%	2
	Authorization, Encryption, Decryption, Access Control		
	(DAC, RBAC, MAC), Intrusion Detection, SQL Injection.		
9	PL/SQL Concepts: Views, PL/SQL Block, Cursors,	5%	3
	Triggers, Stored Procedures, Stored Functions.		

i. Text Books:

- 1. Database System Concepts (TextBook) By Abraham Silberschatz, Henry Korth, S. Sudarshan McGraw Hill International 6th Edition
- **2.** An Introduction to Database Systems By C. J. Date, A. Kannan, S. Swamynathan Pearson Education
- 3. SQL, PL/SQL

j. Practical List:

1. Create the following:

i. DBMS Concepts:

- Define DBMS (Database Management System). Explain the advantages of DBMS over File Processing System (FPS).
- List 15 applications of Database. Explain any 2 applications and describe how a Database can be helpful in managing those applications.

ii. Database Creation:

• Create a database with the following details:

- A. Student Details: Create using Excel.
- B. Employee Details: Create using MS Access.
- C. Facebook: Create using Excel.

2. Create the following Tables:

- Important Instructions:
 - Use varchar2(30) datatype for Alphanumeric Characters and Special Symbols, number datatype for Numbers, date datatype for Date.
 - Use same table and column name (Capital and Small Case) as mentioned in this file.
 - Insert proper data (Capital and Small Case) as mentioned in this file.

• Employee

- Emp_name Street City
- Adam Spring Pittsfield
- Brooks Senator Brooklyn
- Curry North Rye
- Demalo SunShine San Deago

3. Simple Queries:

- i. Describe deposit, branch.
- ii. Describe borrow, customers.
- iii. List all data from table DEPOSIT.
- iv. List all data from table BORROW.
- v. List all data from table CUSTOMERS.
- vi. List all data from table BRANCH.
- vii. Give account no and amount of depositors.
- viii. List all data from SAILORS.
- ix. List Boat Name and its color.
- x. List Employee name and its city.
- xi. List all the details of Clients.
- xii. Describe various products and its price.
- xiii. Describe sailor's name, age and its rating.
- xiv. Describe the managers of various employees.
- xv. Describe the details of Loan for customers.
- xvi. Describe the date of travel of various sailors.

4. Simple Queries:

- i. Give name of depositors having amount greater than 4000.
- ii. List the employees having salary less than 22000.
- iii. List the sailors having age more than 25.
- iv. List the boats travelling on 10-Oct-98.
- v. List the details of boat "Interlake".
- vi. List the details of the red colored boat.
- vii. List the details of clients whose city is Mumbai.

- viii. List Client Name, due balance and city of the clients having balance greater than 1500.
 - ix. Describe the details of products having selling price less than 500.
 - x. List the products for which quantity ordered is less than 120 and cost price is greater than 250.
- xi. Display account details having amount greater 2200.
- xii. Display all the customers staying in Nagpur.
- xiii. Display the names of sailors having rating greater than 7.
- xiv. Display the orders made in the month of June.
- xv. List all the accounts created in the month of March.

5. "Like" Queries:

- i. Display all customers whose name start with 'M'.
- ii. Display all the customers whose name ends with 'L'.
- iii. Display all loan details whose branch starts with 'A'.
- iv. Display the details of sailors whose name is minimum 6 characters long.
- v. Display the details of Employees whose address starts with 'S'.
- vi. List the details of the boat ending with 'e'.
- vii. List the details of clients having 'h' as a 3rd character in his/her name.
- viii. List Client Name, due balance and city whose pin code starts with 4.
 - ix. List all customers whose city contains 'a' as second character.
 - x. List client names and city whose state has 'a' as fourth or fifth character.

6. "Aggregate Functions & DML" Queries:

- i. List total deposit from deposit.
- ii. Give Maximum loan given to a customer.
- iii. Describe the average age of all the sailors.
- iv. Count total number of customers.
- v. Count total number of customer's cities.
- vi. Display total target for the salesman.
- vii. Update the salary of the employee having 10000 to 11500.
- viii. Update the city of client from Bangalore to Bengaluru.
 - ix. Give the 15% hike in the salary of all the Employees. Rename that column to "New Salary".
 - x. Increase the sell price of all products by 20% and label new column as "New Sell Price". (Do not update the table)
 - xi. Provide the count of customers staying in "Bombay".

7. "Join" Queries:

- i. Find the salary of Adam.
- ii. Find the city where Brooks work.
- iii. Display the sailor's details whose boat is booked for 9th May, 98.
- iv. Display the day of ride and sailor name for boat 103.
- v. Display the sailor name and its age for Red colored and 101 boat.

- vi. Display the sailor details whose boat is never booked.
- vii. Display the sailor name that has Red or Green Boat.
- viii. Display all sailor details and boat details and who has Interlake boat.
 - ix. Display sailor's rating with boat details or the trip on 10th October, 98.
 - x. Display the sailor id and name whose age is more than 42 or who has Blue colored boat.
- xi. Display name and rating of sailor whose boat name is Clipper.
- xii. List products whose selling price is more than 500 and less than equal to 750.
- xiii. Describe the second highest salary of an employee.
- xiv. Display the date of travel and sailor's name whose age is between 35 and 65.
- xv. List all the employees working for "FBC".

8. "Join" Queries:

- i. Display all the employee name and the city where they work.
- ii. Display the employee name and company's name having salary more than 15000.
- iii. Find the average rating and age of all sailors.
- iv. List various products available.
- v. Display the names of salesman who have salary more than 2850.
- vi. Change the cost price of Trousers to 950.
- vii. List all the clients having "a" as a second character in their names.
- viii. List all the products whose QtyonHand is less than Reorderlv1.
 - ix. Print the description and total qty sold for each product.
 - x. Find out all the products which have been sold to "Ivan Bayross".
- xi. Find the names of all clients who have purchased Trousers.
- xii. Find the products and their quantities for the orders placed by client C00001 and C00002.
- xiii. List the client details who place order no. 019001.
- xiv. List the name of clients who have placed orders worth Rs. 10000 or more.
- xv. Find the total of Qty ordered for each Order.

9. "Miscellaneous" Queries:

- i. Find the average rate for each Order.
- ii. Give the loan details of all the customers.
- iii. List the customer name having loan account in the same branch city they live in.
- iv. Provide the loan details of all the customers who have opened their accounts after August'95.
- v. List the order information for client C00001 and C00002.
- vi. List all the information for the order placed in the month of June.
- vii. List the details of clients who do not stay in Maharashtra.
- viii. Determine the maximum and minimum product price. Rename the output as "Max_Price" and "Min_Price".

- ix. Count the number of products having price less than or equal to 500.
- x. List the order number and the day on which client placed an order.
- xi. List the month and the date on which an order is to be delivered.
- xii. List the date, 25 days after today's date.
- xiii. Find the total of all the billed orders in the month of June.
- xiv. List the products and orders from customers who have ordered less than 5 units of "Pull Overs".
- xv. Find the list of products and orders placed by "Ivan Bayrosss" and "Mamta Muzumdar".
- xvi. List the clients who placed order before June'04.
- xvii. List all the clients who stays in "Bengaluru" or "Mangalore".

10. PL/SQL Block:

- i. Write a PL/SQL Block to Add 2 Numbers.
- ii. Write a PL/SQL Block to find Area of Rectangle, Triangle, and Square.
- iii. Write a PL/SQL Block to find Maximum of 3 numbers.
- iv. Write a PL/SQL Block to print sum of N Numbers using For Loop.
- v. Write a PL/SQL Block to generate Fibonacci series of N numbers.

Semester 3 - 3

a. Course Name: Object Oriented Programming with JAVA

b. Course Code: 303105205

c. Prerequisite: Basic knowledge of software applications

d. Rationale: This course provides a broad introduction to software engineering. The various process models required to develop software are also described. Moreover, the functional and non-functional requirements are also described.

e. Course Learning Objectives:

CLOBJ 1	Gain the Knowledge of the concept with the Object-oriented programming, OOPs principles.	
CLOBJ 2	Understand Data types, variables, operators.	
CLOBJ 3	Understand the concept of Control statements.	
CLOBJ 4	Demonstrate the use of Arrays, Array values, and memory storage Structure.	
CLOBJ 5	Demonstrate the use of various OOPs concepts with the help of programs.	
CLOBJ 6	Study the use of Inheritance with Examples.	
CLOBJ 7	Understand the concept of Strings, Packages, and Interfaces.	
CLOBJ 8	Demonstrate the Concept of Exception Handling.	
CLOBJ 9	Gain the knowledge of multi-threading.	
CLOBJ 10	Understand the knowledge of Collections Framework.	

f. Course Learning Outcomes:

CLO 1	Describe the procedural and object-oriented paradigm with concepts of streams, classes, functions, data, and objects.
CLO 2	Understand dynamic memory management techniques using pointers, constructors, destructors, etc.
CLO 3	Describe the concept of function overloading, operator overloading, virtual functions, and polymorphism.
CLO 4	Classify inheritance with the understanding of early and late binding, usage of exception handling, and generic programming.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
L	T	P	C	Internal Evaluation		ESE	ESE		
				MSE	CE	P	Theory	P	Total
2	0	2	3	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Design introduction: Object-oriented programming,	10%	3
	OOPs principles, encapsulation, inheritance, and poly-		
	morphism; Java as an OOP & internet enabled language,		
	importance of Java, Java usage in industry, the byte code,		
	compiling, and running of simple Java program, JVM,		
	JDK, JRE.		
2	Data types, variable, operators: Data types, vari-	10%	3
	ables, dynamic initialization, scope and lifetime of vari-		
	ables, type conversion and casting, operators.		
3	Control statements: Conditional Statements, Looping	10%	3
	Statements, Jump Statements.		
4	Arrays: Array, Array values and memory storage Struc-	8%	3
	ture, Types of Arrays.		

5	Object-oriented programming: Classes and objects:	18%	5
	concepts of classes and objects, declaring objects, assign-		
	ing object reference variables, methods, constructors, ac-		
	cess control, garbage collection, usage of static with data		
	and methods, usage of final with data, overloading meth-		
	ods and constructors, parameter passing - call by value,		
	recursion, nested classes.		
6	Inheritance: Inheritance Basics, member access rules,	8%	2
	Usage of super key word, forms of inheritance, Method		
	Overriding, Abstract classes, Dynamic method dispatch,		
	Using final with inheritance.		
7	Strings, Packages and Interfaces: String handling	12%	4
	functions, Packages, Class path, importing packages, dif-		
	ferences between classes and interfaces, Implementing &		
	Applying interface, enumerations in Java.		
8	Exception Handling: Exceptions, Types of Exceptions,	8%	2
	Handling of Exceptions.		
9	Multi Threading: Thread, Usage of threads, Types of	10%	3
	threads, Handling Threads.		
10	Collections Framework: Functional Programming,	6%	2
	Collections, Hierarchy of collections.		

i. Text Books:

- 1. Introduction to Java Programming (Comprehensive Version) Daniel Liang; Pearson (TextBook)
- 2. Core Java Volume-II Fundamentals Horstmann & Cornell; Pearson
- 3. Complete Reference Java 2 Herbert Schildt; TMH

j. List of Practicals:

- 1. Write a program to display Hello World message in the console window.
- 2. Write a program to perform arithmetic and bitwise operations in a single source program without object creation.
- 3. Write a program to perform arithmetic and bitwise operations by creating individual methods and classes, then create an object to execute the individual methods of each operation.
- 4. Write a Java program to display the employee details using Scanner class.
- 5. Write a Java program that prints all real solutions to the quadratic equation $ax^2 + bx + c = 0$. Read in a, b, c and use the quadratic formula. If the discriminant $b^2 4ac$ is negative, display a message stating that there are no real solutions.
- **6.** The Fibonacci sequence is defined by the following rule: The first 2 values in the sequence are 1, 1. Every subsequent value is the sum of the 2 values preceding it. Write a Java program that uses both recursive and non-recursive functions to print the *n*th value of the Fibonacci sequence.

- 7. Write a Java program that prompts the user for an integer and then prints out all the prime numbers up to that integer.
- 8. Write a Java program to multiply two given matrices.
- **9.** Write a Java program for sorting a given list of names in ascending order.
- 10. Write a Java program for Method overloading and Constructor overloading.
- 11. Write a Java program to represent Abstract class with an example.
- 12. Write a program to implement multiple Inheritances.
- 13. Write a program to demonstrate method overriding and super keyword.
- 14. Write a Java program to implement Interface using extends keyword.
- 15. Write a Java program to create inner classes.
- 16. Write a Java program to create a user-defined package.
- 17. Write a Java program that displays the number of characters, lines, and words in a text.
- 18. Write a Java program that checks whether a given string is a palindrome or not. E.g., MADAM is a palindrome.
- 19. Write a Java program that reads a line of integers and then displays each integer and the sum of all integers. (Use StringTokenizer class).
- **20.** Write a Java program for creating a single try block with multiple catch blocks.
- 21. Write a program for multiple try blocks and multiple catch blocks including finally.
- 22. Write a program to create a user-defined exception.
- 23. Write a Java program for producer and consumer problem using Threads.
- 24. Write a Java program that implements a multi-threaded application with three threads. The first thread generates a random integer every 1 second, and if the value is even, the second thread computes the square of the number and prints it. If the value is odd, the third thread will print the value of the cube of the number.
- 25. Write a program to create a dynamic array using ArrayList class and print the contents of the array object.
- **26.** Write programs to implement add, search, and remove operations on ArrayList object.

Semester 3 - 4

a. Course Name: Kali Linux and shell scripting

b. Course Code: 303105212

- c. Prerequisite: Understanding the basic concepts of the Linux operating system., Navigating the Linux file system and directory structure., File and directory permissions in Linux., Operating System, Experience using the Linux terminal for executing commands., Critical thinking and problem-solving skills for addressing practical challenges
- d. Rationale: The subject "Kali Linux and Shell Scripting" aims to provide students with comprehensive knowledge and practical skills in shell scripting, emphasizing its application in cybersecurity using the Kali Linux platform.

e. Course Learning Objectives:

CLOBJ 1	Develop a strong understanding of basic shell scripting concepts, including variables, loops, and conditionals, enabling students to write and execute simple shell scripts effectively.
CLOBJ 2	Gain proficiency in advanced shell scripting techniques, such as file manipulation, text processing with tools like grep, sed, and awk, and effective debugging and error-handling strategies.
CLOBJ 3	Learn to automate system administration tasks, manage users and groups, monitor system resources, and enhance system security through the development of robust shell scripts.
CLOBJ 4	Explore the integration of shell scripting with other programming languages and tools to create custom scripts tailored for cybersecurity applications, such as auditing, backup, and remote administration.
CLOBJ 5	Apply learned skills to design and implement a shell script-based solution to a real-world problem, demonstrating the ability to solve practical challenges and presenting project outcomes effectively.

f. Course Learning Outcomes:

CO 1	Explain the core concepts of shell scripting and its role in Linux task automation.
CO 2	Implement control flow structures like loops and conditionals for script logic.
CO 3	Design well-structured scripts using functions for code modularity and reusability.
CO 4	Analyze real-world cyber security challenges where shell scripting can provide solutions.
CO 5	Develop custom scripting solutions to automate administrative tasks in cyber security contexts.

g. Teaching & Examination Scheme:

Teaching Scheme				Evaluation Scheme					
L	Т	P	C	Internal Evaluation ESE		Total			
				Т	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT 1: Introduction to Shell Scripting and Kali	20%	9
	Linux:		
	Overview of Shell Scripting, Introduction to Kali Linux,		
	Understanding the Linux command line interface, Basics		
	of shell scripting (variables, loops, conditionals), Writing		
	and executing simple shell scripts, Introduction to basic		
	Linux commands used in shell scripting		
2	UNIT 2: Advanced Shell Scripting Techniques:	30%	12
	Working with files and directories in shell scripts, In-		
	put/output redirection and piping, Advanced text pro-		
	cessing (using grep, sed, and awk), Functions and debug-		
	ging techniques in shell scripting, Error handling and exit		
	codes Shell scripting best practices and conventions.		

3	UNIT 3: Shell Scripting for System Administra-	20%	12
	tion:		
	Managing users and groups with shell scripts, automating		
	system tasks with cron jobs, writing scripts to monitor		
	system resources, Shell scripting for system security and		
	auditing, creating backup and restore scripts, Networking		
	and remote administration using shell scripts.		
4	UNIT 4: Practical Applications and Project Work:	30%	12
	Integration of shell scripting with other programming lan-		
	guages, building interactive shell scripts, developing cus-		
	tom scripts for specific tasks, Case studies and real-world		
	examples of shell scripting in cybersecurity, Project work:		
	students design and implement a shell script-based solu-		
	tion for a practical problem, Presentation and demonstra-		
	tion of project work.		

i. Reference:

- 1. Learning Linux Shell Scripting Ganesh Naik (TextBook)
- 2. The Linux Command Line: A Complete Introduction William E. Shotts Jr (TextBook)
- 3. Kali Linux Revealed: Mastering the Penetration Testing Distribution Raphael Hertzog, Jim O'Gorman, and Mati Aharoni
- **4.** Classic Shell Scripting: Hidden Commands that Unlock the Power of Unix Arnold Robbins, Nelson H. F. Beebe
- 5. Sed and Awk: Pocket Reference Arnold Robbins
- 6. Linux Shell Scripting Cookbook Shantanu Tushar

j. List of Practical:

- 1. Write a shell script to display a greeting message using variables.
- 2. Write a script to automate the process of creating multiple directories.
- **3.** Experiment with different ways of executing shell scripts (e.g., ./script.sh, sh script.sh).
- **4.** Practice text processing by writing a script to search for a specific pattern in a file using grep.
- **5.** Write a script that demonstrates the use of functions to perform repetitive tasks.
- 6. Create backup and restore scripts for critical system files and directories
- 7. Design custom scripts tailored to specific system administration tasks in your environment.
- 8. Develop a script to remotely administer multiple Linux machines over SSH.
- **9.** Build an interactive script that prompts users for input and performs actions accordingly.

Semester 3 - 5

a. Course Name: Discrete Mathematics

b. Course Code: 303191202

c. Prerequisite: Knowledge of Mathematics up to 12th science level

d. Rationale: The Mathematics I, Mathematics-II syllabus integrates fundamental calculus concepts, advanced mathematical techniques, and vector calculus, preparing students for engineering challenges with optimized problem-solving skills.

e. Course Learning Objectives:

CLOBJ 1	Apply mathematical techniques to solve diverse real-world problems across different topics in Discrete Mathematics.
CLOBJ 2	Develop and apply analytical and critical thinking skills to understand, analyze, and evaluate mathematical structures and proofs.
CLOBJ 3	Recognize and interpret mathematical solutions within the context of specific problems, demonstrating practical applications in various fields.
CLOBJ 4	Clearly and effectively communicate mathematical concepts and solutions in both written and verbal forms, adapting to diverse topics.
CLOBJ 5	Present mathematical arguments and solutions in a unified, logical, and organized manner, emphasizing clarity, coherence, and precision.
CLOBJ 6	Establish a comprehensive foundation for more advanced courses in mathematics and related disciplines by demonstrating a thorough understanding of fundamental concepts.

f. Course Learning Outcomes:

CLO 1	Demonstrate proficient problem-solving skills, translating real-world problems into mathematical formulations and applying appropriate techniques for solutions.
CLO 2	Develop integrated analytical and critical thinking skills by engaging with a wide range of mathematical structures, proofs, and problem-solving techniques presented throughout the entire syllabus.
CLO 3	Understand and interpret mathematical solutions within the context of specific problems, recognizing the practical applications of discrete mathematics in diverse fields covered in all units.
CLO 4	Communicate mathematical concepts and solutions clearly and effectively, both in written and verbal forms, adapting communication styles to the diverse topics covered in each unit.
CLO 5	Present mathematical arguments and solutions in a unified, logical, and organized manner, emphasizing clarity, coherence, and precision across all units.
CLO 6	Lay a solid foundation for more advanced courses in mathematics and related disciplines.

g. Teaching & Examination Scheme:

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Interna	Internal Evaluation		ESE		Total
				MSE	CE	P	Theory P		Total
4	-	-	4	20	20	-	60 -		100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr. No.	Topics	Weightage	Teaching Hours
1	UNIT 1: Sets, Relation and Function Cartesian Products, Binary Relation, Partial Ordering Relation, Equivalence Relation, Size of a Set, Finite and Infinite Sets, Countable and Uncountable Sets, Cantor's Diagonal Argument and The Power Set Theorem, Schroeder-Bernstein Theorem.	8%	5
2	UNIT 2: Principles of Mathematical Induction The Well-Ordering Principle, Recursive Definition, The Division Algorithm: Prime Numbers, The Greatest Com- mon Divisor: Euclidean Algorithm, The Fundamental Theorem of Arithmetic. Basic Counting Techniques: In- clusion and Exclusion, Pigeon-Hole Principle, Permuta- tion and Combination.	15%	9
3	UNIT 3: Propositional Logic Syntax, Semantics, Validity and Satisfiability, Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication, Rules of Inference, The Use of Quantifiers. Proof Techniques: Some Terminology, Proof Methods and Strategies, Forward Proof, Proof by Contradiction, Proof by Contradiction, Proof by Contraposition, Proof of Necessity and Sufficiency.	25%	15
4	UNIT 4: Algebraic Structures and Morphism Algebraic Structures with One Binary Operation: Semi Groups, Monoids, Groups, Congruence Relation and Quo- tient Structures, Free and Cyclic Monoids and Groups, Permutation Groups, Substructures, Normal Subgroups. Algebraic Structures with Two Binary Operations: Rings, Integral Domain and Fields. Boolean Algebra and Boolean Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function, Disjunctive and Con- junctive Normal Form.	17%	10
5	UNIT 5: Graphs and Trees Graphs and Their Properties: Degree, Connectivity, Path, Cycle, Sub Graph, Isomorphism, Eulerian and Hamilto- nian Walks, Graph Colouring, Colouring Maps and Pla- nar Graphs, Colouring Vertices, Colouring Edges, List Colouring, Perfect Graph: Definition, Properties and Ex- ample. Rooted Trees, Trees and Sorting, Weighted Trees and Prefix Codes, Bi-connected Component and Articu- lation Points, Shortest Distances.	10%	6

i. Text Books and Reference Books:

- **1.** Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill
- 2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structure and Its Application to Computer Science, Tata McGraw-Hill
- **3.** Susanna S. Epp, Discrete Mathematics with Applications, 4th Edition, Wadsworth Publishing Co. Inc.
- **4.** C. L. Liu and D. P. Mohapatra, Elements of Discrete Mathematics: A Computer-Oriented Approach, 3rd Edition, Tata McGraw Hill.

Semester 3 - 6

a. Course Name: Professional Communication Skills

b. Course Code: 303193203

c. Prerequisite: Knowledge of English language in practical life

d. Rationale: Knowledge and application of English, Aptitude and Management

Skills are crucial for better employability as well as professionalism.

e. Course Learning Objectives:

CLOBJ 1	Students will be able to demonstrate the ability to communicate clearly and persuasively in oral presentations.
CLOBJ 2	Students will practice active listening techniques to enhance understanding in professional interactions.
CLOBJ 3	Students will write professional emails, memos, and reports with clarity and conciseness.
CLOBJ 4	Students will understand and practice time management strategies effectively.
CLOBJ 5	Students will be able to demonstrate skills in resolving conflicts and negotiating effectively.
CLOBJ 6	Students will use digital communication tools and platforms effectively.

CLO 1	To develop advanced communication skills.
CLO 2	To become more proficient in formal writing.
CLO 3	To apply interpersonal communication skills to be more productive at the workplace.
CLO 4	To identify, set, and achieve goals with the help of time management.
CLO 5	To use a range of vocabulary to communicate effectively.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Interna	l Evalua	$ ext{tion}$	ESE		Total
				MSE	CE	P	Theory P		Total
0	2	0	2	0	100	0	0 0		100

L- Lectures; T- Tutorial; P- Practical; C- Credit; \mathbf{MSE} - Mid-Semester Evaluation; \mathbf{CE} - Continuous Evaluation; \mathbf{ESE} - End Semester Examination

Sr.	Topics	Weightage	_
No.			Hours
1	Technical Writing: Email etiquette & Email writ-	10%	4
	ing, Letter Writing (Types of Letters & Layout)		
	Trains students on detailed email and letter writing eti-		
	quette. Students will be able to write formal letters fol-		
	lowing certain stipulated formats. They will learn different		
	types of letters for different official purposes.		
2	Interpersonal Communication at Workplace: Dy-	10%	2
	namics of communication		
	To develop the confidence to handle a wide range of de-		
	manding situations more effectively at the workplace. To		
	enable the students to analyse their own interpersonal		
	communication style.		
3	Debate: The three minute debate planner	10%	4
	To enable the students to generate effective critical think-		
	ing into primary issues in the given topic. Students will be		
	able to resolve controversies and recognize strengths and		
	weaknesses of arguments.		
4	Goal setting & Tracking	10%	2
	To enable the students to define strategies or implementa-		
	tion steps to attain the identified goals and make progress		
	every day.		
5	Time Management & Task Planning (Case-study)	5%	2
	To enable the students to identify their own time wasters		
	and adopt strategies to reduce them. To enable students		
	to clarify and prioritize their objectives and goals by cre-		
	ating more planning time.		
6	Reading Comprehension: Intermediate level	5%	2
	To enable the students to develop the knowledge, skills,		
	and strategies they must possess to become proficient and		
	independent readers.		

7	Listening Skills: Small everyday conversation & comprehension	10%	2
	Provides practice on understanding accents and day-to-		
	day conversations. Listening to English conversations in		
	different contexts.		
8	Information design and writing for print and online	5%	2
	media: Blog Writing		
	To enable students to design information that is targeted		
	to specific audiences in specific situations to meet defined		
	objectives. To create blogs and share their own knowledge		
	and experience with the world.		
9	Advanced vocabulary Building	10%	4
	The students will expand their vocabulary so as to en-		
	hance their proficiency in reading and listening to aca-		
	demic texts, writing, and speaking. The students will at-		
	tain vocabulary to comprehend academic and social read-		
	ing and listening texts. The students will develop ade-		
	quate speaking skills to communicate effectively.		
10	Picture Perception	5%	1
	To prepare the students for a test for basic intelligence		
	and IQ, generally done on the first day of SSB (Sashastra		
	Seema Bal is one of India's Central Armed Police Forces).		
11	Appreciation, Apology and Acknowledgement let-	10%	2
	ters		
	To enable the students to maintain productive business		
	relationships through different types of letters. To enable		
	the students to express their feelings without speaking out		
	loud.		
12	The Art of Negotiation	5%	2
	To enable the students to reach an agreement for mu-		
	tual benefits through negotiation. To enable the students		
	to learn a process by which compromise or agreement is		
	reached while avoiding argument and dispute.	- 04	
13	Activity Session (Game of Truth)	0%	1
	To make the students think of the significance of certain		
	things in their life. To make them share their thoughts		
	and perceptions of matters in life with others.		

i. Reference Books:

- 1. Business Corespondence and Report Writing SHARMA, R. AND MOHAN.
- 2. Communication Skills Kumar S And Lata P; New Delhi Oxford University
- 3. Practical English Usage MICHAEL SWAN
- 4. A Remedial English Grammar for Foreign Students F.T. WOOD
- ${\bf 5.}$ On Writing Well William Zinsser; Harper Paperbacks, 2006; 30th anniversary edition

Semester 4 - 1

a. Course Name: Operating System

b. Course Code: 303105251

c. Prerequisite: Fundamentals of Computer Systems

d. Rationale: This course is an introduction to the theory and practice behind modern computer operating systems. Topics will include what an operating system does (and doesn't) do, system calls and interfaces, processes, concurrent programming, resource scheduling and management, virtual memory, deadlocks, algorithms, programming, and security. The approach of the subject is from both a theoretical perspective as well as a practical one.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with the generation of Operating System, types of operating System, and the concept of a virtual machine.
CLOBJ 2	Solve problems related to Scheduling Algorithm and concepts of threading, multi-threading, etc.
CLOBJ 3	Acquire knowledge of Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, and Strict Alternation, Peterson's Solution, Semaphores, Event Counters, Monitors, Message Passing, and Classical IPC Problems.
CLOBJ 4	Understand Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection, and Recovery.
CLOBJ 5	Demonstrate a clear understanding of Memory Management, Memory allocation, and Paging.
CLOBJ 6	Study Hardware: I/O devices, Device controllers, Direct memory access, Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device-independent I/O software, etc.

f. Course Learning Outcomes:

CLO 1	Distinguish different styles of operating system design.
CLO 2	Understand device and I/O management functions in operating systems as part of a uniform device abstraction.
CLO 3	Understand disk organization and file system structure.
CLO 4	Give the rationale for virtual memory abstractions in operating systems.
CLO 5	Understand the main principles and techniques used to implement processes and threads as well as the different algorithms for process scheduling.
CLO 6	Understand the main mechanisms used for inter-process communication.

g. Teaching & Examination Scheme:

\mathbf{T}	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Inte	rnal Eva	luation	ESE		Total
				T	CE	P	Theory P		Total
3	-	2	4	20	20	20	60 30		150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	INTRODUCTION: Concept of Operating Systems,	5%	3
	Generations of Operating Systems, Types of Operating		
	Systems, OS Services, System Calls, Structure of an		
	OS-Layered, Monolithic, Microkernel Operating Systems,		
	Concept of Virtual Machine.		

2	PROCESSES, THREAD & PROCESS	20%	9
	SCHEDULING: Processes: Definition, Process		
	Relationship, Different states of a Process, Process		
	State transitions, Process Control Block (PCB), Context		
	switching. Thread: Definition, Various states, Benefits of		
	threads, Types of threads, Concept of multithreads. Pro-		
	cess Scheduling: Foundation and Scheduling objectives,		
	Types of Schedulers, Scheduling criteria: CPU utilization,		
	Throughput, Turnaround Time, Waiting Time, Response		
	Time; Scheduling algorithms: Pre-emptive and Non		
	pre-emptive, FCFS, SJF, RR.		
3	INTER-PROCESS COMMUNICATION: Critical	15%	6
	Section, Race Conditions, Mutual Exclusion, Hardware		
	Solution, Strict Alternation, Peterson's Solution, The		
	Producer/Consumer Problem, Semaphores, Event Coun-		
	ters, Monitors, Message Passing, Classical IPC Problems:		
	Reader's & Writer Problem, Dining Philosopher Problem		
	etc.		
4	DEADLOCKS: Definition, Necessary and sufficient con-	10%	5
	ditions for Deadlock, Deadlock Prevention, Deadlock		
	Avoidance: Banker's algorithm, Deadlock detection and		
	Recovery.		
5	MEMORY MANAGEMENT & VIRTUAL MEM-	30%	13
	ORY: Memory Management: Basic concept, Logical and		
	Physical address map, Memory allocation: Contiguous		
	Memory allocation-Fixed and variable partition, Inter-		
	nal and External fragmentation and Compaction; Paging:		
	Principle of operation-Page allocation, Hardware support		
	for paging, Protection and sharing, Disadvantages of pag-		
	ing. Virtual Memory: Basics of Virtual Memory, Hard-		
	ware and control structures, Locality of reference, Page		
	fault, Working Set, Dirty page/Dirty bit, Demand paging,		
	Page Replacement algorithms: Optimal, First in First Out		
	(FIFO), Second Chance (SC), Not recently used (NRU)		
	and Least Recently used (LRU).		

6	I/O SYSTEMS, FILE & DISK MANAGEMENT:	20%	9
	I/O Hardware: I/O devices, Device controllers, Direct		
	memory access Principles of I/O Software: Goals of		
	Interrupt handlers, Device drivers, Device independent		
	I/O software. File Management: Concept of File, Ac-		
	cess methods, File types, File operation, Directory struc-		
	ture, File System structure, Allocation methods (contigu-		
	ous, linked, indexed), Free-space management (bit vec-		
	tor, linked list, grouping), directory implementation (lin-		
	ear list, hash table), efficiency and performance. Disk		
	Management: Disk structure, Disk scheduling algorithms		
	- FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk for-		
	matting, Boot-block, Bad blocks.		

i. Text Book and Reference Book:

- 1. Operating System Concepts Essentials (TextBook) By Avi Silberschatz, Peter Galvin, Greg Gagne 9th Edition Wiley Asia Student Edition.
- 2. Operating Systems Internals and Design Principles, By William Stallings PHI 5th Edition
- **3.** Operating System: A Design-oriented Approach By Charles Crowley 1st Edition Irwin Publishing
- **4.** Operating Systems: A Modern Perspective By Gary J. Nutt Addison-Wesley 2nd Edition
- 5. Design of the Unix Operating Systems By Maurice Bach Prentice-Hall of India 8th Edition
- **6.** Understanding the Linux Kernel By Daniel P. Bovet, Marco Cesati O'Reilly and Associates 3rd Edition

j. Practical List

- 1. Study of Basic commands of Linux.
- 2. Study the basics of shell programming.
- 3. Write a Shell script to print given numbers sum of all digits.
- **4.** Write a shell script to validate the entered date (e.g., Date format: dd-mm-yyyy).
- 5. Write a shell script to check if the entered string is a palindrome or not.
- **6.** Write a Shell script to say "Good morning", "Good afternoon", or "Good evening" as you log in to the system.
- 7. Write a C program to create a child process.
- **8.** Find the largest number from three numbers supplied as command line arguments.
- **9.** Print patterns using a for loop in C.

- 10. Write a Shell script to determine whether a given file exists or not.
- 11. Write a C program for process creation using the gcc compiler.
- 12. Implement the First-Come-First-Served (FCFS) Scheduling Algorithm and Round Robin Scheduling Algorithm.
- 13. Implement the Banker's Algorithm.

Semester 4 - 2

a. Course Name: Software Engineering

b. Course Code: 303105253

c. Prerequisite: Basic knowledge of software applications

d. Rationale: This course provides a broad introduction to software engineering. The various process models required to develop software are also described. Moreover, the functional and non-functional requirements are also described.

e. Course Learning Objectives:

CLOBJ 1	Student will be able to understand about Software.
CLOBJ 2	Student will be able to create some Software.
CLOBJ 3	Student will be able to create some design about WAN or LAN.
CLOBJ 4	Understand different types of software.
CLOBJ 5	Demonstrate a software for testing purposes.
CLOBJ 6	Study about the Use Case study, CASE Tools, and Advanced Practices of System Dependability and Security.

CLO 1	Prepare and perform Software Requirement Specification and Software Project Management Plan.
CLO 2	Ensure the quality of software product, different quality standards, and software review techniques.
CLO 3	Apply the concept of Functional Oriented and Object-Oriented Approach for Software Design.
CLO 4	Understand modern Agile Development and Service Oriented Architecture Concept of Industry.
CLO 5	Analyze, design, verify, validate, implement, and maintain software systems.
CLO 6	Execute a Project Management Plan, tabulate Testing Plans, and reproduce effective procedures.

Teaching Scheme				Evaluation Scheme					
L	Т	P	C	Interna	ıl Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
3	-	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Content	Weightage	Teaching
No.			Hours
1	Introduction: Study of Different Models, Software Characteristics, Components, Applications, Layered Technologies, Processes, Methods and Tools, Generic View Of Software Engineering, Process Models - Waterfall model, Incremental, Evolutionary process models - Prototype, Spiral And Concurrent Development Model; Agile Development: Agility and Agile Process model, Extreme Programming, Other process models of Agile Development and Tools.	10%	6
2	Software Project Management: Management Spectrum, People – Product – Process – Project, W5HH Principle, Importance of Team Management; Planning a Software Project: Scope and Feasibility, Effort Estimation, Schedule and Staffing, Quality Planning, Risk Management - Identification, Assessment, Control, Project Monitoring Plan, Detailed Scheduling.	10%	5
3	Requirements Engineering: Problem Recognition, Requirement Engineering Tasks, Processes, Requirements Specification, Use Cases and Functional Specification, Requirements Validation, Requirements Analysis.	10%	5
4	Structured System Design: Design Concepts, Design Model, Software Architecture, Data Design, Architectural Styles and Patterns, Architectural Design, Alternative Architectural Designs, Modeling Component Level Design and Its Modeling, Procedural Design, Object-Oriented Design. Data Oriented Analysis & Design: Difference between Data and Information, E-R Diagram, Dataflow Model, Control Flow Model, Control and Process Specification, Data Dictionary.	15%	5

5	Coding and Unit Testing: Programming Principles	10%	4
	and Guidelines, Programming Practices, Coding Stan-		
	dards, Incremental Development of Code, Management		
	of Code Evaluation, Unit Testing - Procedural Units,		
	Classes, Code Inspection, Metrics - Size Measure, Com-		
	plexity Metrics, Cyclomatic Complexity, Halstead Mea-		
	sure, Knot Count, Comparison of Different Metrics.		
6	Software Testing and Quality Assurance: Concepts,	15%	7
	Psychology of Testing, Levels of Testing, Testing Pro-		
	cess - Test Plan, Test Case Design, Execution, Black-Box		
	Testing – Boundary Value Analysis – Pairwise Testing		
	- State Based Testing, White-Box Testing Criteria and		
	Test Case Generation and Tool Support; Quality Assur-		
	ance: Quality Control, Assurance, Cost, Reviews, Soft-		
	ware Quality Assurance, Approaches to SQA, Reliability,		
	Quality Standards - ISO9000 and 9001.		
7	CASE Tools and Advanced Practices of System	15%	5
	Dependability and Security: Computer Aided Soft-		
	ware Engineering Tools, SCRUM Developments, Depend-		
	able System, Reliability Engineering, Safety Engineering,		
	Security Engineering, Resilience Engineering.		
8	Advanced Software Engineering: Software Reuse,	15%	5
	Component Based Software Engineering, Distributed		
	Software Engineering, Service-Oriented Software Engi-		
	neering, Real-Time Software Engineering, Systems Engi-		
	neering, Systems of System.		

i. Text Books and Reference Books:

- 1. Software Engineering (Text Book) R.Pressman; 6th Edition
- 2. Internetworking with TCP/IP Principles, Protocols and Architecture
- 3. Software Engineering By Sommerville
- 4. Data Communication and Networking

j. List of Practicals:

- 1. Project Definition and objective of the specified module and Perform Requirement Engineering Process.
- 2. Identify Suitable Design and Implementation model from the different software engineering models.
- 3. Prepare Software Requirement Specification (SRS) for the selected module.
- **4.** Develop Software Project Management Planning (SPMP) for the specified module.
- **5.** Do Cost and Effort Estimation using different Software Cost Estimation models.

- **6.** Prepare System Analysis and System Design of identified Requirement Specification using structure design as DFD with data dictionary and Structure Chart for the specific module.
- 7. Designing the module using Object-Oriented approach including Use Case Diagram with scenarios, Class Diagram, State Diagram, Collaboration Diagram, Sequence Diagram, and Activity Diagram.
- 8. Defining Coding Standards and walkthrough.
- 9. Write the test cases for the identified module.
- 10. Demonstrate the use of different Testing Tools with comparison.
- 11. Define security and quality aspects of the identified module.

Semester 4 - 3

a. Course Name: Network Concepts & Security

b. Course Code: 303105260

c. Prerequisite: Basic computer concepts & Information technology

d. Rationale: The Network Concepts & Security subject plays a pivotal role in modern education and professional training as it addresses the fundamental principles and advanced strategies essential for the design, implementation, and maintenance of secure and efficient computer networks. In an era where digital connectivity is ubiquitous, understanding network concepts is crucial for individuals to comprehend the intricate web of communication protocols, hardware components, and software applications that underpin our interconnected world. Simultaneously, the inclusion of security aspects emphasizes the paramount importance of safeguarding sensitive information, preventing unauthorized access, and mitigating potential cyber threats. This subject equips students with the knowledge and skills necessary to navigate the complexities of networking while instilling a proactive mindset toward identifying and addressing security vulnerabilities, thereby contributing to the resilience and integrity of digital infrastructures in the face of evolving technological challenges.

e. Course Learning Objectives:

CLOBJ 1	Students should be able to comprehend and analyze various network architectures, including their components, protocols, and functionalities. This objective involves acquiring knowledge about different types of networks such as LANs, WANs, and wireless networks, and understanding how they operate within different organizational contexts.				
CLOBJ 2	Evaluate and deploy common routing protocols and Design and implement efficient LANs using switching technologies, including VLANs, spanning tree protocols, and other mechanisms to enhance network performance and scalability.				
CLOBJ 3	Articulate a comprehensive understanding of the fundamental concepts behind proxies and Virtual Private Networks (VPNs), including their functionalities, protocols, and roles in enhancing online privacy and security.				
CLOBJ 4	Articulate the various types of security threats specific to wireless networks and assess the strengths and weaknesses of different wireless encryption protocols such as WEP, WPA, and WPA2, and demonstrate the ability to select appropriate encryption methods based on specific security requirements.				
CLOBJ 5	Gain practical experience in planning, executing, and analyzing penetration tests on network environments, employing industry-standard tools and methodologies to simulate real-world cyber threats.				

f. Course Learning Outcomes:

CO 1	Provide students with a comprehensive understanding of the diverse classifications of computer networks and the Open Systems Interconnection (OSI) model.
CO 2	Gain hands-on experience in configuring routers and switches, implementing routing protocols, and troubleshooting common issues to develop practical skills applicable to real-world networking scenarios.
CO 3	Develop a comprehensive understanding of the fundamental concepts of VPNs and proxies, including their roles in network security, privacy, and access control.
CO 4	Students will familiar with the tools and methodologies employed in wireless penetration testing, emphasizing hands-on experience in identifying and exploiting weaknesses in wireless protocols and configurations.
CO 5	Students will learn and apply various penetration testing methodologies, tools, and techniques to systematically evaluate the security posture of networked systems.

g. Teaching & Examination Scheme:

Teaching Scheme			Evaluation Scheme						
L	\mathbf{T}	P	\mathbf{C}	Interna	ıl Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Types of Network & OSI Layers: Types of networks,	20%	6
	IP Address, NAT, IP Subnets, DHCP Server, Ports, DNS,		
	Proxy Servers, DNS Server, OSI and TCP IP Model		
2	Basics of Routing & Switching: Routers, Switches,	20%	9
	Endpoint solutions, Access Directory, TOR Network. Net-		
	working Devices (Layer1,2,3) - Different types of net-		
	work layer attacks–Firewall, ACL, Packet Filtering, DMZ,		
	Alerts and Audit Trails		

3	Proxy & VPNs: PN and its types –Tunnelling Protocols	20%	10
	– Tunnel and Transport Mode –Authentication Header-		
	IPSEC Protocol Suite – IKE PHASE 1, Implementation		
	of VPNs.		
4	Wireless Attacks: Network Sniffing, Wireshark, packet	20%	10
	analysis, display and capture filters, ettercap, DNS Poi-		
	soning, Denial of services, Vulnerability scanning, Nessus,		
	Network Policies, Network Scanning Report Generation,		
	Router attacks, Packet Sniffing, Types of authentication,		
	Fake Authentication Attack, De authentication, Attacks		
	on WPA and WPA-2 Encryption, fake hotspot, WPA &		
	WPA-2 attacks, Wireless Hacking using phishing, MITM		
	(man in the middle attack), Brute Force Attacks		
5	Network pentest: HOST DISCOVERY, PORT SCAN-	20%	10
	NING., Banner Grabbing/OS Fingerprinting., Scan for		
	Vulnerabilities., Draw Network Diagrams., Prepare Prox-		
	ies., Document all Findings.		

i. Reference Books:

- 1. "Computer Networking: Principles, Protocols and Practice", Olivier Bonaventure
- **2.** Computer Networking: A Top-Down Approach James F. Kurose, Keith W. Ross
- 3. Network Security Essentials William Stallingst
- 4. Network Attacks and Exploitation: A Framework. Wiley Monte, M.
- 5. Network Security. Wiley Perez, Andre.
- **6.** Network Security, Private communication in public world (2nd Ed.) PHI Kaufman, C., Perlman,

Semester 4 - 4

a. Course Name: Programming in Python with Full Stack Development

b. Course Code: 303105257

c. Prerequisite: Basic knowledge of Programming and web applications

d. Rationale: This course provides a broad introduction to Python programming and development of web applications. Developing and using Python as a scripting language for automating tasks and data processing. Moreover, building and deploying web applications using popular Python frameworks such as Django and Flask.

e. Course Learning Objectives:

CLOBJ 1	Gain familiarity with the fundamental concepts of web development and basic Python programming concepts.
CLOBJ 2	Gain knowledge to define functions in Python. Acquire knowledge of OOPS concepts.
CLOBJ 3	Acquire knowledge of how to work with modules and packages in Python.
CLOBJ 4	Understand and use the Flask framework.
CLOBJ 5	Understand and use the Django framework.
CLOBJ 6	Study the use of RESTful APIs.

CLO 1	Understand the fundamental concepts of web development.
CLO 2	Create and manipulate data using a variety of databases, including SQL and NoSQL.
CLO 3	Build and deploy web applications using a popular Python web framework, such as Django or Flask.
CLO 4	Design and implement APIs (application programming interfaces) that enable different applications to communicate with each other.
CLO 5	Test and debug web applications, and deploy them to production environments.

Teaching Scheme				-	Evaluat	tion Scheme			
L	T	P	C	Internal Evaluation			ESE		Total
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	UNIT-I: Introduction to Python Programming	15%	6
	Introduction to Python and basic programming concepts,		
	variables, data types, conditional statements and loops,		
	Lists, Sets, Tuples, Dictionaries: Working with strings,		
	lists, sets, tuples and dictionaries, including common op-		
	erations and built-in functions.		
2	UNIT-II: Functions and OOPS Concepts	20%	5
	Defining and using functions, including the use of ar-		
	guments and return values. OOPS Concepts: Object,		
	class, abstraction, encapsulation, polymorphism, Inheri-		
	tance. Exceptions and File handling: Handling exceptions		
	and working with files.		
3	UNIT-III: Modules and Packages	15%	5
	Working with modules and packages in Python. Introduc-		
	tion to popular Python libraries for specific tasks, such as		
	data analysis, web development, or game development.		
	PyCharm IDE: GIT- Git Integration with PyCharm IDE,		
	PyTests. Python connectivity with Databases MYSQL,		
	MongoDB CRUD operations.		
4	UNIT-IV: Flask Framework	20%	10
	Introduction to Flask and web development with Python,		
	Installation in Virtual Environment. Creation Routing		
	App Settings URL Building HTTP methods Templates		
	Working with Static, Media Files. Sending Form Data to		
	Template. Flask App with Database connectivity Sqlite3,		
	MySQL. Handling Exceptions and Errors Flash Message		
	Working with Mails. Authenticating and authorizing		
	users with Flask-Login, Deploying a Flask application to		
	a web server.		

5	UNIT-V: Django Framework	20%	10
	Introduction to Django framework, Django Project Instal-		
	lation in Virtual Environment. Phases in Django Project		
	Creation Create a Project. Creation of Apps and their		
	Structure. Working with ADMIN Console. Creating		
	Views URL Mapping. Template System Working with		
	Models. Form Processing static, media files, Django App		
	Deployment.		
6	UNIT-VI: RESTful APIs	10%	6
	Introduction to RESTful APIs and the REST architec-		
	tural style, Understanding the HTTP protocol and its role		
	in RESTful APIs, Designing and implementing REST-		
	ful APIs using common HTTP methods, such as GET,		
	POST, PUT, and DELETE, Using URLs and resource		
	representations to identify and transfer data in RESTful		
	APIs, Implementing best practices for designing and im-		
	plementing RESTful APIs, such as using HTTP status		
	codes, versioning, and error handling, Consuming REST-		
	ful APIs using common tools and libraries, such as cURL,		
	Postman, and the requests library in Python, Building		
	scalable and secure RESTful APIs using common frame-		
	works and libraries Flask or FastAPI.		

i. Text Books and Reference Books:

- 1. Fluent Python, 2nd Edition by Luciano Ramalho (TextBook)
- 2. Learn Python3 the Hard Way By Zed Shaw
- **3.** Django for Beginners: Build websites with Python and Django by William S. Vincent.
- 4. Learning Django Web Development by Samuli Natri.
- **5.** Flask Web Development with Python by Miguel Grinberg.
- **6.** Mastering Flask by Jack Stouffer.
- 7. Building RESTful Python Web Services by Gastón C. Hillar.
- 8. Building Web APIs with FastAPI by Samuel Colvin.

j. List of Practicals:

1. Set-1

- 1. A program that converts temperatures from Fahrenheit to Celsius and vice versa.
- 2. A program that calculates the area and perimeter of a rectangle.
- 3. A program that generates a random password of a specified length.
- **4.** A program that calculates the average of a list of numbers.
- **5.** A program that checks if a given year is a leap year.

- **6.** A program that calculates the factorial of a number.
- **7.** A program that checks if a given string is a palindrome.
- 8. A program that sorts a list of numbers in ascending or descending order.
- 9. A program that generates a multiplication table for a given number.
- 10. A program that converts a given number from one base to another.

2. Set-2

- 1. A program that models a bank account, with classes for the account, the customer, and the bank.
- 2. A program that simulates a school management system, with classes for the students, the teachers, and the courses.
- 3. A program that reads a text file and counts the number of words in it.
- **4.** A program that reads a CSV file and calculates the average of the values in a specified column.
- **5.** A program that reads an Excel file and prints the data in a tabular format.

3. Set-3

- 1. A program that creates a simple web server and serves a static HTML page.
- **2.** A program that creates a web application that allows users to register and login.
- **3.** A program that creates a web application that allows users to upload and download files.
- **4.** A program that creates a web application that displays data from a database in a tabular format.
- 5. A program that creates a web application that accepts user input and sends it to a server-side script for processing.

4. Set-4

- 1. A program that creates a web application that uses a template engine to generate dynamic HTML pages.
- 2. A program that creates a web application that supports AJAX requests and updates the page without reloading.
- **3.** A program that creates a web application that uses Django's built-in debugging features to troubleshoot errors and exceptions.
- **4.** A program that creates a web application that implements user authentication and authorization.
- **5.** A program that creates a web application that integrates with third-party APIs to provide additional functionality.

5. Set-5

- 1. A program that creates a simple RESTful API that returns a list of users in JSON format.
- 2. A program that creates a RESTful API that allows users to create, read, update, and delete resources.
- **3.** A program that creates a RESTful API that authenticates users using a JSON Web Token.

- **4.** A program that creates a RESTful API that paginates the results of a query to improve performance.
- **5.** A program that creates a RESTful API that supports data validation and error handling.

Semester 4 - 5

a. Course Name: Professional Grooming & Personality Development

b. Course Code: 303193252

 ${\bf c.}$ ${\bf Prerequisite:}$ Knowledge of English language in practical life

d. Rationale: Knowledge and application of English, Aptitude, and Management

Skills are crucial for better employability as well as professionalism.

e. Course Learning Objectives:

CLOBJ 1	Students will be able to demonstrate the ability to communicate clearly and persuasively in oral presentations.
CLOBJ 2	Students will practice active listening techniques to enhance understanding in professional interactions.
CLOBJ 3	Students will write professional emails, memos, and reports with clarity and conciseness.
CLOBJ 4	Students will understand and practice time management strategies effectively.
CLOBJ 5	Students will be able to demonstrate skills in resolving conflicts and negotiating effectively.
CLOBJ 6	Students will use digital communication tools and platforms effectively.

CLO 1	Identify and develop soft skills required for personal and professional growth.
CLO 2	Develop professional etiquette & desired behavior at the workplace.
CLO 3	Speak and participate effectively in oral organizational communication.
CLO 4	Improve comprehensive skills for reading.
CLO 5	Know how to be assertive in a professional environment.

Teaching Scheme					1	Evaluat	tion Scheme		
L	T	P	C	Internal Evaluation			ESE		Total
				MSE	CE	P	Theory	P	Total
0	1	0	1	0	100	0	0	0	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Self Development and Assessment: Various self-	25%	4
	assessments for personal and professional development		
	skills that are relevant to career development:		
	Change, Grow, Persist, Prioritize, Read, Learn, Listen,		
	Record, Remember, Guess, Think, Communicate, Relate,		
2	and Dream.	25%	4
2	Corporate Etiquette: Tips and guide to develop personality and gain various etiquettes manners, case studies,	25%	4
	and activities.		
	Telephone etiquette		
	Etiquette for foreign business trips		
	Etiquette for small talks		
	Respecting privacy		
	Learning to say 'No'		
3	Public Speaking: It's process of communicating infor-	20%	4
	mation to an audience and is helpful in career advance-		
	ment. Effective Public speaking skills includes:		
	Choosing appropriate pattern		
	Selecting appropriate method		
	Art of persuasion		
	Making speeches effective		
	Delivering different types of speeches		
4	Reading Skills Activity & Reading Comprehen-	15%	2
	sion: Aims to improve students' comprehensive skills in		
	English Language by getting them involved in reading ac-		
	tivity and providing practice for reading comprehension.		

5	Listening Skills- Inquiry Based Listening Ques-	15%	1
	tions: Aims to improve students' listening skills in En-		
	glish Language providing them practice of various types		
	of inquiry based listening tracks. Students will listen and		
	will be able to find out details from the conversations.		

^{*}Continuous Evaluation: It consists of Assignments/Seminars/Presentations/Quizzes/Surprise Tests (Summative/MCQ) etc.

i. Reference Books:

- 1. Business Correspondence and Report Writing SHARMA, R. AND MOHAN, K.
- **2.** Communication Skills Kumar S and Lata P; New Delhi Oxford University Press
- 3. Practical English Usage MICHAEL SWAN
- 4. A Remedial English Grammar for Foreign Student F.T. WOOD

Semester 4 - 6

a. Course Name: Cryptography

b. Course Code: 303105265

c. Prerequisite: Fundamentals of Cryptography

d. Rationale: The objective of this subject is to train students in the fundamentals of cryptography, including both symmetric and asymmetric encryption methods. The course will focus on secure communication techniques, cryptography algorithms, digital signatures, and key management, providing a solid foundation for securing data in networked environments.

e. Course Learning Objectives:

CLOBJ 1	Understand the fundamental concepts of cryptography including security goals, attacks, services, mechanisms, and techniques, as well as traditional symmetric-key ciphers.
CLOBJ 2	Analyze the structure and functioning of modern symmetric-key ciphers like DES and AES, and understand their strengths and weaknesses.
CLOBJ 3	Gain knowledge of asymmetric-key cryptography such as RSA, RABIN, and ELGAMAL, and understand cryptographic hash functions used for integrity and authentication.
CLOBJ 4	Learn about digital signature schemes, entity authentication methods, and key management techniques including KERBEROS and symmetric key distribution.
CLOBJ 5	Understand and apply cryptographic protocols at the application and transport layers such as PGP, S/MIME, and SSL for securing digital communications.

CO 1	Identify the fundamentals of cryptography, including symmetric and asymmetric key algorithms.
CO 2	Analyze and implement traditional and modern cryptography algorithms such as DES, AES, and RSA.
CO 3	Apply cryptography techniques to ensure message integrity and authentication.
CO 4	Discuss the role of cryptography in secure communication at the application and transport layers.
CO 5	Develop skills in managing keys, securing digital communications, and working with protocols like PGP, S/MIME, and SSL.

Te	Teaching Scheme Evaluation Sch					tion Scheme			
\mathbf{L}	\mathbf{T}	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	_	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.			Hours
1	Introduction to Cryptography and Traditional Ci-	20%	6
	phers Security Goals, Attacks, Services, Mechanisms,		
	Techniques, Traditional Symmetric-Key Ciphers: Substi-		
	tution Cipher, Transposition Cipher, Stream and Block Ci-		
	phers.		
2	Modern Symmetric-Key Ciphers and DES: Intro-	20%	12
	duction to Modern Block and Stream Ciphers, Data En-		
	cryption Standard (DES), DES Structure, Analysis, Mul-		
	tiple DES, Advanced Encryption Standard (AES), AES		
	Structure and Analysis.		
3	Asymmetric-Key Cryptography & Message Au-	20%	12
	thentication: Introduction to RSA, RABIN, ELGA-		
	MAL Cryptosystems, Message Integrity and Authentica-		
	tion, Cryptographic Hash Functions (SHA-512, MD5)		
4	Digital Signatures & Key Management: RSA and	20%	10
	ELGAMAL Digital Signature Schemes, Entity Authenti-		
	cation: Passwords, Challenge–Response,Zero–Knowledge		
	Protocols, Symmetric-Key Distribution, KERBEROS		
5	Security at Application and Transport Layer: PGP,	20%	5
	S/MIME, SSL Architecture		

i. Reference Books

- 1. Cryptography and Network Security Principles and Practices (TextBook) By Williams Stallings — Pearson Education — Third Edition
- 2. Cryptography & Network Security, Atul Kahate, The McGraw-Hill Companies.
- **3.** The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations by Gene Kim, Jez Humble, Patrick Debois, and John Willis

j. List of Practical:

- 1. Implement Ceaser cipher and apply brute force attack to get original key.
- 2. Apply attacks for cryptanalysis to decrypt the original message from a given cipher text using Play fair cipher.

$$Key = Parul$$

- **3.** mplement Deffi Hellman key exchange algorithm. Generate shared secret without sharing the secret code.
- 4. Implement and Analyze DES algorithm.
- **5.** Implement RSA cryptosystem.
- **6.** Implement Message Integrity using SHA-256 hashing function which creates chain of three blocks. Each block contains index, timestamp, data, previous hash value and current block of hash value. Test message integrity of program by modifying one of the hash values of a block.
- 7. Implement Elgamal Cryptosystem.
- 8. Implement Digital Signature.
- **9.** Study and Configure SSH to authenticate machines, generate session key and transfer files using symmetric key and asymmetric key cryptography.
- 10. Prepare report on any advanced cryptographic system.

Semester 5-1

a. Course Name: Design and Analysis of Algorithm

b. Course Code: 303105218

c. Prerequisite: Data structures, Fundamentals of programming

d. Rationale: Analyze the asymptotic performance of algorithms. Write rigorous correctness proofs for algorithms. Demonstrate a familiarity with major algorithms and data structures. Apply important algorithmic design paradigms and methods of analysis. Synthesize efficient algorithms in common engineering design situations.

e. Course Learning Objectives:

CLOBJ 1	Develop the ability to analyze the running time of any given algorithm using asymptotic analysis and prove the correctness of basic algorithms.
CLOBJ 2	Design efficient algorithms for computational problems, using various algorithm design techniques taught in the course.
CLOBJ 3	Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate.
CLOBJ 4	Analyze String matching algorithms.
CLOBJ 5	Explain the complexity classes P, NP, and NP-Complete, and demonstrate the NP-Completeness of a specific problem.

CLO 1	Develop the ability to analyze the running time of any given algorithm using asymptotic analysis and prove the correctness of basic algorithms.
CLO 2	Design efficient algorithms for computational problems, using various algorithm design techniques taught in the course.
CLO 3	Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate.
CLO 4	Analyze String matching algorithms.
CLO 5	Explain the complexity classes P, NP, and NP-Complete, and demonstrate the NP-Completeness of specific problems.

Teaching Scheme				Evaluation Scheme					
L	Т	P	C	Interna	ıl Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
3	-	4	5	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; \mathbf{MSE} - Mid-Semester Evaluation; \mathbf{CE} - Continuous Evaluation; \mathbf{ESE} - End Semester Examination

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction and Analysis of Algorithms:	20%	10
	Algorithm: Definition, Properties, Types of Algorithms,		
	Writing an Algorithm, Analysis: Parameters, Design		
	Techniques of Algorithms		
	Asymptotic Analysis: Big Oh, Big Omega & Big Theta		
	Notations, Lower Bound, Upper Bound and Tight Bound,		
	Best Case, Worst Case, Average Case, Analyzing control		
	statement, Loop invariant and the correctness of the al-		
	gorithm, Recurrences-substitution method, recursion tree		
	method, master method. Sorting Techniques with analy-		
	sis: Bubble Sort, Selection Sort, Insertion Sort.		
2	Divide & Conquer Algorithms: Structure of divide-and-	20%	6
	conquer algorithms, Examples: Binary search, Quick sort,		
	Merge sort, Strassen's Multiplication, Max-Min problem.		
3	Greedy Algorithms: Introduction, Elements of Greedy	20%	8
	Strategy, Minimum Spanning Tree: Kruskal's & Prim's		
	Algorithm, Dijkstra's Algorithm, Knapsack Problem, Ac-		
	tivity Selection Problem, Huffman Codes.		
4	Dynamic Programming: Principle of Optimality, $0/1$	20%	8
	Knapsack Problem, Making Change Problem, Chain Ma-		
	trix Multiplication, Longest Common Subsequence, All		
	Pair Shortest Paths: Warshall's and Floyd's Algorithms.		
5	Exploring Graphs: An introduction using graphs and	5%	3
	games, Undirected Graph, Directed Graph, Traversing		
	Graphs, Depth First Search, Breadth First Search, Topo-		
	logical Sort.		
6	Backtracking and Branch & Bound: Introduction to Back-	5%	4
	tracking, Introduction to Branch & Bound, 0/1 Knapsack		
	Problem, N-Queens Problem, Travelling Salesman Prob-		
	lem.		

7	String Matching & NP Completeness: String Matching:	10%	6
	Introduction to String Matching, Naive String Matching,		
	Rabin-Karp Algorithm, Kruth-Morris-Pratt Algorithm,		
	String Matching using Finite Automata. NP Complete-		
	ness: Introduction to NP Completeness, P Class Prob-		
	lems, NP Class Problems, Hamiltonian Cycle.		

i. Reference Books:

- 1. "Introduction to Algorithms, 4TH Edition" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press/McGraw-Hill. (TextBook)
- 2. "Fundamentals of Algorithms" by E. Horowitz et al. (TextBook)
- 3. "Algorithm Design, 1ST Edition" by Jon Kleinberg and Éva Tardos, Pearson.
- **4.** "Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition" by Michael T. Goodrich and Roberto Tamassia, Wiley.
- 5. "Algorithms—A Creative Approach, 3RD Edition" by Udi Manber, Addison-Wesley, Reading, MA.

j. List of Practical:

- 1. Write a program to determine whether the given number is Prime or not.
- 2. Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.
- **3.** There are N children standing in a line with some rating value. You want to distribute a minimum number of candies to these children such that:
 - Each child must have at least one candy.
 - The children with higher ratings will have more candies than their neighbours.

You need to write a program to calculate the minimum candies you must give.

- **4.** There is a new barn with N stalls and C cows. The stalls are located on a straight line at positions x_1, x_N ($0 \le x_i \le 1,000,000,000$). We want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?
- **5.** Given an undirected graph with V vertices and E edges, check whether it contains any cycle or not.
- **6.** There are n servers numbered from 0 to n-1 connected by undirected server-to-server connections forming a network where connections $[i] = [a_i, b_i]$ represents a connection between servers a_i and b_i . Any server can reach other servers directly or indirectly through the network. A critical connection is a connection that, if removed, will make some servers unable to reach some other servers. Return all critical connections in the network in any order.
- 7. Given a grid of size $N \times M$ (N is the number of rows and M is the number of columns in the grid) consisting of '0's (Water) and '1's (Land). Find the number of islands.

- **8.** Given a grid of dimension $N \times M$ where each cell in the grid can have values 0, 1, or 2 which has the following meaning:
 - 0: Empty cell
 - 1: Cells have fresh oranges
 - 2: Cells have rotten oranges

We have to determine what is the minimum time required to rot all oranges. A rotten orange at index [i, j] can rot other fresh oranges at indexes [i - 1, j], [i + 1, j], [i, j - 1], [i, j + 1] (up, down, left and right) in unit time.

- 9. Given two strings str1 and str2 and below operations that can be performed on str1. Find the minimum number of edits (operations) required to convert 'str1' into 'str2'.
 - Insert
 - Remove
 - Replace

All of the above operations are of equal cost.

- 10. The "Minimum Path Sum" problem states that given an $n \times m$ grid consisting of non-negative integers, we need to find a path from top-left to bottom-right, which minimizes the sum of all numbers along the path.
- 11. Given string num representing a non-negative integer num, and an integer k, return the smallest possible integer after removing k digits from num.
- 12. There is a robot on an $m \times n$ grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m-1][n-1]). The robot can only move either down or right at any point in time. Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

Semester 5-2

a. Course: Web Application Security

b. Course Code: 303105320

c. Prerequisite: Fundamentals of web applications, Understanding of web application development language

d. Rationale: Web application security is the practice of protecting websites, applications, and APIs from attacks. It is a broad discipline, but its ultimate aims are keeping web applications functioning smoothly and protecting businesses from cyber vandalism, data theft, unethical competition, and other negative consequences.

e. Course Learning Objectives:

CLO 1	Understand the fundamentals of web application security, including HTTP, HTTPS, cookies, and session management.
CLO 2	Identify and analyze web security vulnerabilities such as SQL injection, cross-site scripting (XSS), and cross-site request forgery (CSRF).
CLO 3	Utilize security tools such as Burp Suite, OWASP Testing Guide, and Nmap for penetration testing and vulnerability assessment.
CLO 4	Evaluate and apply secure coding practices to mitigate web application security risks.
CLO 5	Implement Secure Development Life Cycle (SDLC) principles to improve web application security and ensure compliance with industry standards.

CO 1	Describe the potential security implications of decentralized technologies in Web application.
CO 2	Identify potential attack vectors through information gathering methods.
CO 3	Differentiate between white-box, grey-box, and black-box penetration testing methodologies and use tools like SQLMap to implement mitigation strategies.
CO 4	Examine and exploit web application vulnerabilities.
CO 5	Recognize and address security misconfigurations and sensitive data exposure.

Te	eaching	g Scheme Evaluation Scheme							
L	T	P	C	Interna	ıl Evalua	tion	ESE		Total
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Basics HTTP & HTTPs: HTTP Request, Response -	15%	7
	Header Fields and HTTPS - Understanding Same Origin		
	– Cookies – Sessions - Web Application Proxies, Under-		
	standing Burp-Suite.		
2	Information Gathering: whois, nsLookup, netcraft - web	20%	9
	server fingerprinting - subdomain enumeration - finger-		
	printing frameworks - hidden resource enumeration - secu-		
	rity misconfigurations - google hacking database - Shodan		
	HQ. OSINT Framework, NMAP: Scanning.		
3	SQL Injections & Authentication Vulnerabilities: SQL	20%	9
	Statements, Finding SQL Injections, Exploiting SQL In-		
	jections, Bypass Authentication, Xpath Injection, Error-		
	Based Injection, Double Query Injection, Time-Based In-		
	jections, Union-Based Injections, SQL Map, Mitigation		
	plans.		
4	Advance Web Application Attacks: Anatomy of an XSS	20%	9
	Exploitation, Reflected XSS, Persistent XSS, DOM-based		
	XSS, Browsers and XSS, Blocking malicious requests, user		
	enumeration, random password guessing, remember-me		
	functionality, no-limit attempts, password reset feature,		
	logout flaws, CAPTCHA.		
5	Advance Web Application Attacks-2: Security Miscon-	25%	11
	figuration, Sensitive data exposure, Insecure direct ob-		
	ject reference and security, CSRF (Cross Site Request		
	Forgery), HTTP Response Splitting, Using Components		
	With Known Vulnerabilities, Unvalidated Redirects and		
	Forwards.		

i. Reference Books:

- 1. "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws" by Dafydd Stuttard, Marcus Pinto (TextBook)
- 2. "The Tangled Web: A Guide to Securing Modern Web Applications" by Michal Zalewski
- 3. "Web Application Security, A Beginner's Guide" by Bryan Sullivan and Vincent Liu
- 4. "OWASP Testing Guide" by The Open Web Application Security Project (OWASP)
- 5. "Web Hacking 101" by Peter Yaworski

j. Course Outcome: After learning the course, students shall be able to:

- 1. Describe the potential security implications of decentralized technologies in Web applications.
- 2. Identify potential attack vectors through information gathering methods.
- 3. Differentiate between white-box, grey-box, and black-box penetration testing methodologies and use tools like SQLMap and implement mitigation strategies.
- **4.** Examine and exploit web application vulnerabilities.
- 5. Recognize and address security misconfigurations and sensitive data exposure.

k. List of Practical:

- 1. Cross-site scripting (XSS) attacks: This practical could involve testing a web application for XSS vulnerabilities and demonstrating how an attacker can exploit them.
- 2. SQL injection attacks: Students can be given hands-on experience in exploiting SQL injection vulnerabilities to access or modify sensitive data in a web application.
- **3.** CSRF (Cross-Site Request Forgery) attacks: This practical could involve demonstrating how an attacker can use CSRF vulnerabilities to trick a user into performing an unwanted action on a web application.
- 4. Broken authentication and session management: Students can be trained to identify and exploit vulnerabilities in authentication and session management mechanisms in a web application.
- 5. Web application firewall (WAF) evasion techniques: This practical could involve testing a web application firewall and demonstrating how an attacker can bypass it using different techniques.
- 6. Information leakage and sensitive data exposure: Students can be given handson experience in identifying and exploiting vulnerabilities that expose sensitive data or information.
- 7. File inclusion attacks: This practical could involve demonstrating how an attacker can exploit file inclusion vulnerabilities to execute arbitrary code on a web server.

- 8. Clickjacking attacks: Students can be trained to identify and exploit clickjacking vulnerabilities in a web application to trick users into clicking on malicious links.
- **9.** Security configuration issues: This practical could involve identifying and exploiting vulnerabilities resulting from insecure web application configurations.
- 10. Input validation and sanitization: Students can be given hands-on experience in testing the input validation and sanitization mechanisms of a web application and identifying vulnerabilities.

a. Course: Mobile Application Security

b. Course Code: 303105323

c. Prerequisite: Fundamentals of Android and iOS architecture, Mobile rooting and Jailbreaking, Understanding of IPA and APK

d. Rationale: The objective of this subject is to train students in various types of penetration testing methodologies for mobile devices, covering fundamental concepts of penetration testing for mobile applications.

e. Course Learning Objectives:

CLO 1	Understand Android and iOS architecture, including hardware/software security models.
CLO 2	Learn mobile security concepts like rooting, jailbreaking, and APK/IPA structures.
CLO 3	Identify mobile app vulnerabilities: authentication flaws, insecure storage, weak cryptography.
CLO 4	Use tools like Burp Suite, MobSF, and Drozer for mobile penetration testing.
CLO 5	Apply OWASP Mobile Top 10 to implement mobile app security best practices.

f. Course Learning Outcomes:

CLOBJ 1	Describe the core components of the Android hardware and software architecture.
CLOBJ 2	Evaluate the security mechanisms of iOS, including its data protection model, sandboxing's impact on app security, and the potential risks of device jailbreaking.
CLOBJ 3	Apply the Android permission model to configure app access and identify security risks, and understand how code-signing verifies app authenticity and origin.
CLOBJ 4	Evaluate mobile vulnerability assessment tools and prepare secure testing environments, automate repetitive tasks, and streamline the mobile security testing process.
CLOBJ 5	Analyze common vulnerabilities exploited in mobile application attacks, identify different attack types, and implement effective mitigation strategies to protect devices.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	C	Internal Evaluation		ESE	ESE		
				MSE	CE	P	Theory	P	Total
3	0	0	4	20	20	20	60	20	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Fundamentals of Android OS and Applications:	15%	6
	History of Android, Understanding Android Hardware		
	and Software Architecture, Understanding Android Secu-		
	rity Model.		
2	iOS & IPA Architecture:	20%	9
	History of iOS, Understanding iOS Hardware and Soft-		
	ware Architecture, Understanding iOS Security Model,		
	Understanding iOS Permission Model for Application Se-		
	curity, Sandboxing, Jailbreaking Devices, Understanding		
	IPA.		
3	Mobile App Security:	20%	9
	Understanding Android Permission Model for Application		
	Security, Sandboxing, Codesigning, Encryption, Rooting		
	Devices, Understanding APK, Understanding Directories		
	and Files on an APK.		
4	Setting Up Mobile Vulnerability Systems and De-	20%	9
	vices:		
	Setting up a mobile app penetration testing environment,		
	interacting with devices, starting with Drozer, under-		
	standing AndroidManifest.xml, configuring Burp Suite for		
	traffic interception, and bypassing traffic interception.		
5	Mobile Application Attacks:	25%	12
	Weak Server-Side Controls (M1), Insecure Data Storage		
	(M2), Insufficient Transport Layer Protection (M3), Un-		
	intended Data Leakage (M4), Poor Authentication & Au-		
	thorization (M5), Broken Cryptography (M6), Client-Side		
	Injections (M7), Security Decisions via Untrusted Input		
	(M8), Improper Session Handling (M9), Lack of Binary		
	Protection (M10).		

- 1. "IOS Application Security: The Definitive Guide for Hackers and Developers" by David Thiel (TextBook)
- 2. "Android Security Internals: An In-Depth Guide to Android's Security Architecture" by Nikolay Elenkov
- **3.** "The Mobile Application Hacker's Handbook" by Dominic Chell, Tyrone Erasmus, Shaun Colley, Ollie Whitehouse, and Georg Wicherski
- **4.** "Mobile Application Security: Protecting Mobile Devices and Their Applications" by Manoranjan (Mano) Paul

j. List of Practical:

- 1. Study the architecture of Android and APK using dex2jar command line.
- 2. Perform APK reversing using JADX.
- **3.** Perform IPA reversing.
- 4. Setting up burp suite to intercept mobile application traffic.
- **5.** Setting up MobSF and extract the source code of the apk.
- **6.** Install Genymotion/NOX player and configure it with the ADB to analyze the apk.
- 7. Installing DIVA on the virtual platform to perform OWASP TOP 10 mobile vulnerabilities.
- 8. Perform Client-side injection on the apk.
- 9. Demonstrate the Hard-coded issue in the apk file.
- 10. Demonstrate improper session handling in apk.

a. Course: Metasploit Framework

b. Course Code: 303105324

c. Prerequisite: Basic knowledge of system and mobile devices, Social Networking platforms, Types of web application functionality, Operating System, Computer Ports and services, Solid understanding of networking fundamentals, Familiarity with operating systems (Linux and Windows).

d. Rationale: The objective of this subject is to train the students about various types of penetration testing methodologies, basic concepts of red teaming, and the use of Metasploit for penetration testing.

e. Course Learning Objectives:

CLOBJ 1	Understand penetration testing methodologies, differentiate penetration testing, vulnerability assessments, and Red Teaming.
CLOBJ 2	Master Metasploit and Meterpreter for exploitation, post-exploitation, and system interaction.
CLOBJ 3	Exploit Linux/Windows servers, bypass IDS/IPS, and perform client-side exploits.
CLOBJ 4	Conduct wireless network penetration testing, including Evil Twin, Karmetasploit, and SMB relay attacks.
CLOBJ 5	Develop custom exploits, create payloads, Android backdoors, and understand cryptographic techniques.

CO 1	Explain the difference between penetration testing and vulnerability assessments.
CO 2	Analyze the structure and anatomy of Metasploit, including an in-depth exploration of its core components.
CO 3	Utilize Metasploit to conduct client-side attacks, generate payloads with ms- fvenom, and exploit Windows machines using social engineering techniques.
CO 4	Assess the effectiveness of various post-exploitation modules in Linux environments to gather comprehensive system information.
CO 5	Apply post-exploitation modules for Windows, including capture, gather, and manage functionalities. In addition, gain a foundational understanding of cryptography and its various types.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	20	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Meterpreter-2:	22%	10
	Setting up multiple communication channels with the		
	target, Meterpreter anti-forensics, the get-desktop and		
	keystroke sniffing, Meterpreter resource scripts, Meter-		
	preter timeout control, Meterpreter Sleep Control, Me-		
	terpreter transports, Interacting with the registry, Meter-		
	preter API and mixins, Injecting VNC server remotely,		
	Enabling remote Desktop.		
2	Server-Side Exploitation:	30%	13
	Exploiting a Linux server, Exploiting a Windows machine,		
	Exploiting Common services.		
3	Client-Side Exploitation:	18%	9
	Bypassing antivirus and IDS/IPS, Human interface de-		
	vice attacks, HTA attack, Backdooring executables using		
	a MITM attack, Creating a Linux trojan, File format-		
	based Exploitation-PDF and Word, Creating an Android		
	backdoor.		
4	Wireless Network Penetration Testing:	30%	13
	Metasploit and wireless, understanding an evil twin at-		
	tack, Configuring karmetasploit, Wireless MITM attacks,		
	SMB relay attacks.		

- 1. "Metasploit: The Penetration Tester's Guide" by David Kennedy, Jim O'Gorman, Devon Kearns, Mati Aharoni (TextBook)
- 2. "Hacking: The Art of Exploitation" by Jon Erickson
- 3. "Network Security Essentials" by William Stallings
- 4. "Metasploit Penetration Testing Cookbook" by Packt Publishing

5. "Metasploit Revealed - Secrets of the Expert Pentester - Build your Defense against Complex Attacks" by Packt Publishing

j. List of Practicals:

- 1. Meterpreter anti-forensics
- 2. The getdesktop and keystroke sniffing
- 3. Interacting with the Windows registry
- 4. Meterpreter API and mixins
- 5. Injecting VNC server remotely
- 6. Enabling remote Desktop
- 7. Exploiting a Linux server
- 8. Exploiting a Windows machine
- 9. Exploiting Common Network services
- 10. Bypassing antivirus and IDS/IPS

a. Course: Professionalism & Corporate Ethics

b. Course Code: 303193304

c. Prerequisite: Knowledge of English language in practical life

d. Rationale: This course aims to provide students with a solid understanding of ethics in engineering, professionalism, and corporate ethics. It will help students develop communication skills, prepare for business school entrance exams, and improve their ability to make ethical decisions in a professional setting.

e. Course Learning Objectives:

CLO 1	Understand the scope and significance of engineering ethics and professionalism.
CLO 2	Apply ethical decision-making skills in resolving dilemmas in professional settings.
CLO 3	Develop communication and listening skills essential for professional environments.
CLO 4	Prepare for management entrance exams such as GMAT and CAT, and improve verbal communication.
CLO 5	Learn to effectively prepare business documents, such as brochures and minutes of meetings.

CO No.	Course Outcome Description
CO 1	Identify and evaluate ethical issues in engineering and corporate scenarios.
CO 2	Communicate effectively in both written and oral forms in professional settings.
CO 3	Analyze and solve ethical dilemmas in corporate contexts.
CO 4	Prepare and present professional documents and communications.
CO 5	Demonstrate critical thinking in analyzing case studies and real-world scenarios.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	10tai
0	1	0	1	0	100	0	0	0	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Ethics in Engineering: Scope of engineering ethics, ac-	20%	5
	cepting and sharing responsibility, resolving ethical dilem-		
	mas, case studies.		
2	Group Discussion: Communication core, definition,	10%	3
	types, process, guidelines, mock round-1.		
3	Introduction to B-School Tests: Students will be able	15%	2
	to solve verbal questions from the GMAT, CAT, and dis-		
	tinguish between national & international levels of Man-		
	agement exams.		
4	Listening Skills - Advanced Level: Demonstrate abil-	10%	1
	ity to listen to more than two minutes of audio clips and		
	solve questions based on it.		
5	Preparing Brochures: Establishing the purpose of writ-	15%	2
	ing and determining the audience for whom the brochure		
	is written.		
6	Agenda & Minutes of Meeting: Explaining what an	10%	1
	agenda and minutes of meeting are and their usefulness.		
7	Reading Comprehension - Intermediate Level:	20%	8
	Skim for main ideas, make use of contextual clues, and		
	solve related questions.		

a. Course: Quant and Reasoning

b. Course Code: 303105311

c. Prerequisite: Good fundamentals in calculations and ability to think logically.

d. Rationale: The course focuses on building core aptitude and reasoning skills. These include analytical thinking, problem-solving, and logical decision-making abilities—vital for engineers in real-world scenarios such as software development, project analysis, and competitive assessments.

e. Course Learning Objectives:

CLO 1	Understand core mathematical concepts related to number systems, averages, ratios, and profit/loss.
CLO 2	Apply logical reasoning techniques to problems involving directions, seating arrangements, syllogisms, clocks, and calendars.
CLO 3	Develop speed and accuracy in solving aptitude problems through practice and structured approaches.
CLO 4	Solve real-world problems using quantitative methods like permutations, combinations, and probability.
CLO 5	Prepare for competitive exams and placement tests by strengthening analytical and reasoning abilities.

CO 1	Apply logic and critical thinking skills to analyze information and draw logical conclusions.
CO 2	Solve complex problems by breaking them into manageable parts and creating effective solutions.
CO 3	Demonstrate the ability to approach problem-solving from different perspectives.
CO 4	Master foundational quantitative techniques for competitive and academic aptitude tests.
CO 5	Evaluate and solve diverse analytical puzzles and reasoning scenarios confidently.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	0	0	3	20	20	0	60	0	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	UNIT-1:	9%	4
	Number system, LCM & HCF simplifications and approx-		
	imations		
2	UNIT-2:	9%	4
	Averages, progressions		
3	UNIT-3:	12%	5
	Ratio and proportion, Problems on Ages, Percentages		
4	UNIT-4:	12%	5
	Profit & loss, partnerships, S.I & C.I		
5	UNIT-5:	18%	8
	Time & work, pipes and cisterns, Time speed and dis-		
	tance, Problems on train crossings, Boats & streams		
6	UNIT-6:	11%	5
	Permutations & combinations, probability		
7	UNIT-7:	4%	2
	Directions, seating arrangements		
8	UNIT-8:	6%	3
	Clocks, calendars		
9	UNIT-9:	9%	4
	Cubes & Dice, syllogisms		
10	UNIT-10:	5%	2
	Blood Relations		
11	UNIT-11:	5%	3
	Series, Analogy, odd man out, coding and Decoding		

- 1. "Quantitative Aptitude for CAT" by Arun Sharma (TextBook)
- 2. "Logical Reasoning for CAT" by Arun Sharma
- 3. "Quantitative Aptitude" by Abhijit Guha

a. Course: Basic Aircraft Science

b. Course Code: 303101331

c. Prerequisite: Zeal to Learn the Subject.

d. Rationale: The subject gives basic principles and understanding of aircraft science, aircraft structure and the operation of engines used in aeronautics. This foundational knowledge is crucial for students aspiring to contribute to aerospace engineering and aviation industries.

e. Course Learning Objectives:

CLOBJ 1	Understand the history, flight vehicles, and aircraft systems.
CLOBJ 2	Understand the fundamentals of aerodynamics involved in airplane performance.
CLOBJ 3	Understand the structures of flight vehicles.
CLOBJ 4	Acquire the knowledge of controls of an aircraft.
CLOBJ 5	Understand the application of propulsion systems.

CO 1	Understand the history, flight vehicles, and aircraft systems.
CO 2	Understand the fundamentals of aerodynamics involved in airplane performance.
CO 3	Understand the structures of flight vehicles.
CO 4	Acquire the knowledge of controls of an aircraft.
CO 5	Understand the application of propulsion systems.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
2	0	0	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	History & Background:	12%	3
	History of Flight, Different types of flight vehicles, UAVs		
	and its application.		
2	Introduction to Aerodynamics:	30%	10
	Structure of the Atmosphere, Airfoil, Airfoil Nomencla-		
	ture, Types of Airfoil, NACA Series, Theories in the Pro-		
	duction of Lift, Newton's Basic Laws of Motion, Forces		
	Acting on the Aircraft, Coefficients of lift and drag at		
	various angles of attack, Lift/Drag Ratio, Types of Drag,		
	Types Wings, Aspect Ratio, Taper Ratio, Wingtip Vor-		
	tices, Axes of an Aircraft.		
3	Introduction to Aircraft Structures:	20%	5
	Introduction, Nomenclature of Aircraft, Fuselage and its		
	Types, Wings, Empennage, Landing Gear, Powerplant,		
	Subcomponents, Structural Components of Helicopter.		
4	Flight Controls:	18%	4
	Introduction, Flight Control Systems, Primary Flight		
	Controls – Ailerons, Elevator, Rudder, Mixing of con-		
	trol surfaces. Secondary Flight Controls – Flaps, Lead-		
	ing Edge Devices, Spoilers, Trim Tabs, Balance Tabs,		
	Servo Tabs, Antiservo Tabs, Ground Adjustable Tabs, Ad-		
	justable Stabilizer, Canard.		
5	Introduction to Aircraft Propulsion:	20%	6
	History, Classification of Powerplant, Thrust, Reciprocat-		
	ing Engines, Propeller, Turbine Engines, Ramjet Engine.		

- 1. Introduction to Flight by J. D. Anderson Tata McGraw-Hill
- 2. Flight without Formula by A. C. Kermode Pearson Education

- **3.** Fundamentals of Flight by R. S. Shevell Pearson Education
- 4. Understanding the Flight by J. D. Anderson McGraw Hill, Inc

a. Course: Disaster Preparedness and Planning

b. Course Code: 303104305

c. Prerequisite: Environmental Studies

d. Rationale: This subject applies conceptual principles of management to understand and mitigate the impact of various types of disasters. It provides insights into disaster classification, risk reduction, and planning for preparedness and recovery through structural and non-structural measures.

e. Course Learning Objectives:

CLOBJ 1	Understand fundamental concepts and definitions related to disasters, hazards, vulnerability, and risk.
CLOBJ 2	Identify various types of natural and man-made disasters and their impacts on the environment and society.
CLOBJ 3	Analyze disaster management frameworks including phases of the disaster cycle and disaster risk reduction.
CLOBJ 4	Understand the interrelationship between development and disasters.
CLOBJ 5	Evaluate roles of different stakeholders, policies, and guidelines in disaster preparedness and planning.

CO 1	Understand the application of disaster concepts to management.
CO 2	Analyze the relationship between development and disasters.
CO 3	Apprehend the categories of disasters.
CO 4	Realize the responsibilities of society towards disaster management.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Internal Evaluation ESE		Total			
				MSE	CE	P	Theory	P	100a1
2	0	0	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; \mathbf{MSE} - Mid-Semester Evaluation; \mathbf{CE} - Continuous Evaluation; \mathbf{ESE} - End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction:	10%	3
	Introduction - Concepts and definitions: disaster, hazard,		
	vulnerability, risks- severity, frequency and details, capac-		
	ity, impact, prevention, mitigation.		
2	Disasters:	25%	7
	Disasters - Disasters classification; natural disasters		
	(floods, draught, cyclones, volcanoes, earthquakes,		
	tsunami, landslides, coastal erosion, soil erosion, forest fires		
	etc.); manmade disasters (industrial pollution, artificial		
	flooding in urban areas, nuclear radiation, chemical spills,		
	transportation accidents, terrorist strikes, etc.); hazard		
	and vulnerability profile of India, mountain and coastal		
	areas, ecological fragility.		
3	Disaster Impacts:	25%	8
	Impacts (environmental, physical, social, ecological, eco-		
	nomic, political); health and psycho-social issues; demo-		
	graphics; hazard locations; disaster trends; climate change		
	and urban disasters.		

4	Disaster Management Cycle and Framework:	25%	8
	Disaster Risk Reduction (DRR) - Disaster management		
	cycle tits phases; prevention, mitigation, preparedness,		
	relief and recovery; structural and non-structural mea-		
	sures; risk analysis, vulnerability and capacity assessment;		
	early warning systems, and Post-disaster environmental		
	response (water, sanitation, food safety, waste manage-		
	ment, disease control, security, communications); Roles		
	and responsibilities of government, community, local in-		
	stitutions, NGOs and other stakeholders; Policies and leg-		
	islation for disaster risk reduction, DRR programmes in		
	India and the activities of National Disaster Management		
	Authority.		
5	Disasters, Environment and Development:	15%	4
	Developmental impacts on vulnerability; environmental		
	modifications; sustainable recovery; reconstruction meth-		
	ods.		

- 1. Disaster Risk Reduction in South Asia by Pradeep Sahni
- 2. Introduction to Disaster Management by Modh Satish, Macmillan Publishers India
- 3. Handbook of Disaster Management: Techniques & Guidelines by Singh B.K
- **4.** Disaster Medical Systems Guidelines by Emergency Medical Services Authority, State of California
- **5.** Inter Agency Standing Committee (IASC) Guidelines on Mental Health and Psychosocial Support in Emergency Settings, Geneva: IASC

a. Course: Cyber Security

b. Course Code: 303105381

c. Prerequisite: Fundamental of Programming, Computer Network

d. Rationale: Cyber security is the application of technologies, processes, and controls to protect systems, networks, programs, devices, and data from cyber-attacks. It aims to reduce the risk of cyber-attacks and protect against the unauthorized exploitation of systems, networks, and technologies.

e. Course Learning Objectives:

CLOBJ 1	Explain the features and characteristics of the Linux Operating System and Windows Operating System.
CLOBJ 2	Apply network monitoring tools to identify attacks against network protocols and services.
CLOBJ 3	Apply various methods to prevent malicious access to computer networks, hosts, and data.
CLOBJ 4	Explain how to investigate endpoint vulnerabilities and attacks.
CLOBJ 5	Analyze network intrusion data to verify potential exploits.
CLOBJ 6	Apply incident response models to manage network security incidents.

CO 1	Explain the features and characteristics of the Linux Operating System and Windows Operating System.
CO 2	Apply network monitoring tools to identify attacks against network protocols and services.
CO 3	Apply various methods to prevent malicious access to computer networks, hosts, and data.
CO 4	Explain how to investigate endpoint vulnerabilities and attacks.
CO 5	Analyze network intrusion data to verify potential exploits.
CO 6	Apply incident response models to manage network security incidents.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Interna	Internal Evaluation ESE			Total	
				MSE	CE	P	Theory	P	100a1
2	0	-	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Information Security: Introduction to information system, Types of information Systems, Development of Information Systems, Introduction to Information Security, Need for Information Security, Threats to Information Systems, Information Assurance, Cyber Security and Security Risk Analysis.	15%	7
2	Systems Vulnerability Scanning: Overview of vulnerability scanning, Open Port/Service Identification, Banner/ Version Check, Traffic Probe, Vulnerability Probe, Vulnerability Examples. Networks Vulnerability Scanning- Netcat, Understanding Port and Services tools, Network Reconnaissance—Nmap. Network Sniffers and Injection tools—Wireshark.	25%	11
3	Network Defense tools: Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, Firewall Protects a Network, Packet Characteristic to Filter, Stateless Vs Stateful Firewalls, Network Address Translation(NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection System.	20%	9
4	Introduction to Cyber Crime and Law: Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian ITACT 2000.	20%	9

5	Introduction to Cyber Crime Investigation: Fire-	20%	9
	walls and Packet Filters, password Cracking, Keyloggers		
	and Spyware, Virus And Worms, Trojan and backdoors,		
	Steganography, DOS and DDOS attack, SQL injection,		
	Buffer Overflow, Attack on wireless Networks.		

- 1. "Cryptography and Network Security" by William Stallings Pearson Education (Text Book)
- 2. "Anti-Hacker Tool Kit" by Mike Shema Mc Graw Hill
- **3.** "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives" by Nina Godbole and Sunit Belapure WILEY
- **4.** "Cryptography and Network Security" by V.K. Jain Khanna Publishing House
- **5.** "Information and Cyber Security" by Gupta Sarika Khanna Publishing House
- 6. "Cryptography and Network Security" by Atul Kahate TMH
- 7. "Cryptography and Information Security" by V.K. Pachghare PHI Learning

a. Course: Internet of Things

b. Course Code: 303105305

c. Prerequisite: Basic Electronics and Circuits, Basic Programming Language.

d. Rationale: The explosive growth of the "Internet of Things" is changing our world. IoT components are allowing people to innovate new designs and products at home. This course will help students learn the importance of IoT in society, the current components of typical IoT devices, and trends for the future. It will also focus on the hardware and software components of embedded systems and the networking aspects of connecting devices to the internet.

e. Course Learning Objectives:

CLOBJ 1	Understand the technological trends leading to the development of IoT and its societal impacts.
CLOBJ 2	Define embedded systems and describe their interface with physical components.
CLOBJ 3	Identify and describe the key components of embedded systems used in IoT.
CLOBJ 4	Explain the interaction between hardware and software in IoT devices.
CLOBJ 5	Understand and implement networking protocols for IoT, including UART and wireless sensor networks.

CO 1	State the technological trends that have led to IoT and describe its impact on society.
CO 2	Define embedded systems and explain their functionality in IoT devices.
CO 3	Enumerate and describe the components of embedded systems.
CO 4	Explain the interaction between embedded systems and the physical world in IoT.
CO 5	Describe the interaction between software and hardware in IoT devices.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation ESE		Total			
				MSE	CE	P	Theory	P	Total
2	0	-	2	20	20	-	60	ı	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction to IoT:	20%	5
	Introduction to IoT, IoT Devices, IoT Devices vs. Com-		
	puters, Societal Benefits of IoT, Risks, Privacy, and Secu-		
	rity.		
2	Basics of Networking and Communication Proto-	20%	5
	cols:		
	Need for Networking, Networking Components, Internet		
	Structure, Protocols: UART and its Synchronization, Se-		
	rial on Arduino, Reading from Serial, Introduction to		
	Wireless Sensor Networking.		
3	IoT Hardware and Software:	30%	8
	Arduino Platform, Arduino IDE, Compiling Code, Ar-		
	duino Shields, Arduino Basic Setup. Setting Up Your		
	Environment, Variables, Basic C Operators, Conditionals,		
	Loops, Functions, Global Variables. Python programming		
	for IoT. Introduction to Raspberry Pi, Implementation of		
	IoT with Raspberry Pi.		
4	Introduction to Embedded Systems:	20%	8
	Microprocessor, Microcontroller, GPU, I/O devices, clock,		
	memory, other peripherals: ADC, DAC, Sensors and Ac-		
	tuators, Introduction to Operating Systems.		
5	Cloud Computing:	10%	4
	Fundamentals of Cloud computing, Cloud computing ser-		
	vice models, Cloud computing management and security,		
	IoT case studies.		

i. Reference Books:

 ${\bf 1.}$ "Internet of Things (A Hands-on Approach)" by Vijay Madisetti and Arshdeep Bahga, VPT

- 2. "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything" by Francis daCosta, Apress Publications
- ${\bf 3.}$ "Embedded Systems: Architecture, Programming and Design" by Rajkamal, TMH
- ${\bf 4.}$ "Arduino Cookbook" by Michael Margolis, O'Reilly Publications
- **5.** "Introduction to IoT" by S. Misra, A. Mukherji, and A. Roy, Cambridge University Press

a. Course: Fundamentals of Communication Engineering

b. Course Code: 203107346

c. Prerequisite: Fourier series, Fourier Transforms, Basic Electronics.

d. Rationale: This course explores the fundamentals of electronic communication systems. The course has two primary focuses: understanding electronic communication systems in analog form from a deterministic approach and gaining a broad understanding of satellite, optical, cellular, mobile, and wireless communications.

e. Course Learning Objectives:

CLOBJ 1	Understand the basics and necessity of modulation in communication systems.
CLOBJ 2	Analyze various noise types and their effects on analog systems.
CLOBJ 3	Learn the principles of analog and digital modulation techniques.
CLOBJ 4	Explore fundamentals of local area networks and their hardware.
CLOBJ 5	Understand concepts of satellite, optical, wireless, and mobile communications.

CO 1	Understand the basics of communication systems.
CO 2	Work on various types of modulations.
CO 3	Use communication modules in practical implementations.
CO 4	Gain a basic understanding of wireless, cellular, and mobile communication.
CO 5	Understand the basics of satellite and optical communication systems.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Interna	Internal Evaluation ESE		Total		
				MSE	CE	P	Theory	P	Total
2	0	0	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction:	8%	3
	Need for Modulation, Frequency translation, Electromag-		
	netic spectrum, Gain, Attenuation and decibels.		
2	Noise:	20%	5
	Introduction, Thermal noise, Shot noise, Partition noise,		
	Low frequency noise, Burst noise, a noise, High frequency		
	noise, BJT and FET noises, Equivalent input noise gen-		
	erators, SNR, Tandem connection SNR, Noise factor and		
	noise figure, Cascaded amplifiers, Lossy networks, Noise		
	temperature, Measurement of noise, Narrow-band noise.		
3	Simple description on Modulation:	22%	6
	Analog Modulation (AM, FM), Pulse Modulation (PAM,		
	PWM, PCM), Digital Modulation (ASK, FSK, PSK,		
	QPSK).		
4	Networking and LAN:	14%	4
	Network fundamentals, LAN hardware, Ethernet LANs,		
	Token Ring LAN.		
5	Satellite Communication & Optical Communica-	22%	6
	tion:		
	Satellite orbits, systems, subsystems, GPS, Optical prin-		
	ciples, Fiber optic cables, WDM.		
6	Cellular, Mobile & Wireless Technologies:	14%	6
	Cellular systems: AMPS, GSM, CDMA, WCDMA. Wire-		
	less: WLAN, PAN, Bluetooth, WiFi, ZigBee, Mesh,		
	WiMAX, MAN, Infrared, RFID, UWB, LTE, 5G.		

- 1. Electronic Communications by Dennis Roddy & John Coolen PHI
- **2.** Electronic Communications by Kennedy McGraw Hill Publication

- **3.** Electronic Communications Systems by Wayne Tomasi Pearson Education India
- 4. Electronic Communication Systems by Roy Blake Cengage Learning
- 5. Communication Systems by Simon Haykins Wiley India
- 6. Modern Digital and Analog Communication Systems by B. P. Lathi, Zhi Ding
 Oxford University Press 4th Edition
- 7. Wireless Communications Principles and Practice by T.S. Rappaport PHI
 2nd edition
- **8.** Introduction to Data Communications and Networking by Wayne Tomasi Pearson Education
- 9. Theory and Problem of Electronic Communication by Lloyd Temes and Mitchel E.Schulz McGraw Hill Publication

a. Course: AWS Fundamentals

b. Course Code: 303105301

c. Prerequisite: Basic understanding of computer concepts and basic programming

d. Rationale: This course provides a broad introduction to AWS cloud infrastructure, services, security and compliance, as well as billing, pricing, and support plans.

e. Course Learning Objectives:

CLOBJ 1	Describe the architecture of AWS global infrastructure including Regions, Availability Zones, and Edge Locations.
CLOBJ 2	Analyze the core AWS services in the areas of compute, storage, database, application integration, and DevOps, and evaluate their application in designing reliable and scalable cloud solutions.
CLOBJ 3	Analyze AWS security mechanisms including identity and access management, encryption, and compliance frameworks, to assess their effectiveness in maintaining secure and compliant cloud environments.
CLOBJ 4	Analyze AWS pricing strategies, support tiers, and budgeting tools to understand cost optimization in cloud environments.
CLOBJ 5	Apply knowledge of AWS SLAs, service lifecycle, and the Well-Architected Framework to assess and design resilient, efficient, and secure cloud architectures.

CO 1	Describe the architecture of AWS global infrastructure including Regions, Availability Zones, and Edge Locations.
CO 2	Analyze the core AWS services in the areas of compute, storage, database, application integration, and DevOps, and evaluate their application in designing reliable and scalable cloud solutions.
CO 3	Analyze AWS security mechanisms including identity and access management, encryption, and compliance frameworks, to assess their effectiveness in maintaining secure and compliant cloud environments.
CO 4	Analyze AWS pricing strategies, support tiers, and budgeting tools to understand cost optimization in cloud environments.
CO 5	Apply knowledge of AWS SLAs, service lifecycle, and the Well-Architected Framework to assess and design resilient, efficient, and secure cloud architectures.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Interna	Internal Evaluation ESE		Total		
				MSE	CE	P	Theory	P	Total
2	0	0	2	20	20	-	60	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

No. 1 Cl	land Concents	(%)	IIauma
1 C	loud Concents		Hours
- -	loud Concepts:	15%	5
	troduction to Cloud Computing, Benefits of Cloud		
	doption, Cloud Deployment Models: Public Cloud, Pri-		
	te Cloud, Hybrid Cloud, Cloud Service Models: Infras-		
	ucture as a Service (IaaS), Platform as a Service (PaaS),		
	oftware as a Service (SaaS), AWS Global Infrastructure:		
	egions, Availability Zones, and Edge Locations.		
	WS Core Services:	20%	7
	ompute Services: Amazon EC2 (Elastic Compute		
	loud), AWS Lambda (serverless), Auto Scaling and Elas-		
	c Load Balancing, Storage Services: Amazon S3 (Sim-		
-	e Storage Service), Amazon EBS (Elastic Block Store),		
	mazon EFS (Elastic File System), Database Services:		
	mazon RDS (Relational Database Service), Amazon Dy-		
	amoDB (NoSQL), Amazon Aurora, Application Integra-		
	on: Amazon SQS (Simple Queue Service), Amazon SNS		
`	Simple Notification Service), AWS Step Functions, De-		
	eloper Tools & DevOps: AWS CodeBuild, CodeDeploy, odePipeline.		
	*	25%	7
	ecurity, Privacy, Compliance, and Trust: lentity and Access Management (IAM): Users, Groups,	29/0	(
	oles, and Policies, Data Protection and Encryption:		
	WS Key Management Service (KMS), AWS Certificate		
	anager (ACM), Compliance Programs and Frameworks:		
	DPR, HIPAA, SOC, ISO, etc., Shared Responsibility		
	dodel, AWS Organizations & Service Control Policies		
	SCPs).		

4	AWS Pricing and Support:	15%	5
	AWS Pricing Models: On-Demand, Reserved, and Spot		
	Instances, Free Tier Overview, Cost Management Tools:		
	AWS Pricing Calculator, AWS Cost Explorer, AWS Bud-		
	gets, Support Plans: Basic, Developer, Business, and En-		
	terprise Support, Billing Dashboard & Alerts.		
5	AWS SLA and Service Lifecycle:	25%	6
	AWS Service Level Agreements (SLAs): Uptime Guar-		
	antees for Key Services, AWS Well-Architected Frame-		
	work: Operational Excellence, Reliability, Performance		
	Efficiency, Cost Optimization, Security, AWS Service Life-		
	cycle: Preview, General Availability (GA), Deprecation,		
	Change Management: Communication around service up-		
	dates and maintenance via AWS Health Dashboard.		

- 1. "AWS Basics: Beginners Guide" by Gordon Wong
- 2. "A Hands-On Guide to the Fundamentals of AWS Cloud" by Mark Wilkins
- 3. "Amazon Web Services in Action" by Andreas Wittig Michael Wittig

a. Course: Security Monitoring

b. Course Code: 303105365

c. Prerequisite: Network security, Sensors; Basics of IPS and IDS.

d. Rationale: The Security Monitoring is part of Security Operation Center where a process is set to detect, analyze, and respond to cybersecurity incidents using a combination of technology and tools and a strong set of processes.

e. Course Learning Objectives:

CLO 1	Understand the fundamentals of Security Monitoring, including Security Operations, SOC infrastructure, security goals, and common security flaws.
CLO 2	Implement and manage log management processes, including log collection, storage, and analysis for security monitoring.
CLO 3	Analyze Security Information and Event Management (SIEM) concepts, including log formats, event correlation, aggregation, and normalization techniques.
CLO 4	Develop and implement an Incident Response Plan, covering incident recording, classification, investigation, forensic analysis, and system recovery.
CLO 5	Utilize SIEM tools such as Splunk for threat intelligence, user behavior analytics (UBA), and AI-driven security monitoring to detect security incidents effectively.

CO 1	Identify the operation and goals of security.
CO 2	Describe and implement the Log management.
CO 3	Explain the security information
	event management architecture, event collection, and correlation with rules.
CO 4	Develop and implement Incident Response Plan and Forensic analysis.
CO 5	Configure and operate a SIEM solution; Correlate logs and detect security incidents using SIEM tools.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	C	Internal Evaluation ESE			Total		
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	20	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Security Monitoring fundamentals:	15%	7
	What is Security Operations, Finding the sweet spot, Se-		
	curity and Control, Security Goals, Reliability vs Security,		
	Typical Security Flaws, basics of SOC infrastructure.		
2	Log management:	20%	9
	Computer Security Log Management, Log Management		
	Infrastructure, Log Management Planning, Log Manage-		
	ment Operational Process.		
3	Security Information & Event Management:	20%	9
	Introduction to SIEM, SIEM Architecture, Logs and		
	Events, Understanding logs, various formats, Log Baselin-		
	ing, Aggregation and normalization, Event Collection and		
	Event Correlation, Correlation Rules.		
4	Incident Response Plan and handling steps:	25%	11
	Purpose of Incident Response Plan, Requirements of In-		
	cident Response Plan, Preparation, Incident Recording,		
	Initial Response, Communicating the Incident, Contain-		
	ment, Formulating a Response Strategy, Incident Classi-		
	fication, Incident Investigation, Data Collection, Forensic		
	Analysis, Evidence Protection, Notify External Agencies,		
	Eradication, Systems Recovery, Incident Documentation,		
	Incident Damage and Cost Assessment, Review and Up-		
	date the Response Policies.		
5	SIEM Tools:	20%	9
	Introduction to Splunk Architecture, Analyzing Live mal-		
	ware traffic samples, Writing advisories, Threat intelli-		
	gence, UEBA, AI in SIEM detection.		

i. Reference Books:

1. "Applied Network Security Monitoring: Collection, Detection, and Analysis" by Chris Sanders, Jason Smith (TextBook)

- 2. "The Practice of Network Security Monitoring: Understanding Incident Detection and Response" by Richard Bejtlich
- **3.** "Security Monitoring: Proven Methods for Incident Detection on Enterprise Networks" by Chris Fry, Martin Nystrom, and Ron Ritchey
- **4.** "The Tao of Network Security Monitoring: Beyond Intrusion Detection" by Richard Bejtlich
- **5.** "Network Forensics: Tracking Hackers through Cyberspace" by Sherri Davidoff and Jonathan Ham

j. List of Practicals:

1. Lab Setup for SIEM: A lab setup for Security Information and Event Management (SIEM) involves creating an environment to simulate real-world scenarios for monitoring and managing security events and incidents. It typically includes setting up the necessary hardware, software, and network infrastructure to replicate the target environment.

Forwarded Setup in Target Machine:In the context of computer networks and system administration, a forwarded setup refers to the configuration of network traffic forwarding from one machine to another. In a target machine setup, forwarding can be enabled to redirect network traffic from a specific source or multiple sources to the target machine.

SIEM Tool Setup in Client Machine: Setting up a SIEM tool on a client machine involves installing and configuring software specifically designed for Security Information and Event Management.

- 2. Log Monitoring: Regularly monitor logs from various sources such as firewalls, intrusion detection systems (IDS), intrusion prevention systems (IPS), network devices, servers, and applications. Look for any suspicious or abnormal activities, such as unauthorized access attempts, unusual network traffic patterns, or system errors.
- **3.** Threat Intelligence Monitoring: Stay updated with the latest threat intelligence feeds and indicators of compromise (IOCs). Monitor for any matches or correlations between the IOCs and your organization's network or systems. This helps identify potential threats and respond proactively.
- 4. SIEM Monitoring: Utilize a Security Information and Event Management (SIEM) system to aggregate and analyze security events from multiple sources. Monitor the SIEM console for any alerts, anomalies, or patterns that may indicate security incidents or policy violations.
- 5. Intrusion Detection: Deploy and monitor intrusion detection systems (IDS) or intrusion prevention systems (IPS) to detect and prevent network-based attacks. Regularly review IDS/IPS alerts and investigate any potential security breaches.
- **6.** Vulnerability Scanning: Conduct regular vulnerability scans of your network and systems using reputable vulnerability scanning tools. Monitor the results and prioritize the remediation of identified vulnerabilities based on their severity.

- 7. Malware Detection: Implement and monitor antivirus and anti-malware solutions across the organization's endpoints, servers, and email gateways. Stay vigilant for any malware alerts or suspicious activities related to malware infections.
- 8. Endpoint Monitoring: Monitor endpoints for any signs of compromise or unusual behavior, such as unauthorized system changes, unusual network connections, or abnormal process activities. Endpoint detection and response (EDR) tools can assist in this process.
- **9.** User Behavior Monitoring: Employ user behavior analytics (UBA) tools to monitor and analyze user activities, such as privileged access usage, access patterns, and behavior anomalies. Identify any suspicious activities that may indicate insider threats or compromised user accounts.
- 10. Network Traffic Analysis: Analyze network traffic using network monitoring tools to identify any abnormal or malicious network behavior, such as command-and-control communications, data exfiltration, or suspicious connections to known malicious IP addresses.

a. Course: Cloud Computing & Security

b. Course Code: 303105367

c. Prerequisite: Knowledge of network terminologies, configuration, protocols, wireless networks, and cloud fundamentals.

d. Rationale: Cloud security is a collection of procedures and technology designed to address external and internal threats to business security. Organizations need cloud security as they move toward their digital transformation strategy and incorporate cloud-based tools and services as part of their infrastructure.

e. Course Learning Objectives:

CLO 1	Explain the fundamentals of cloud computing, including its types and service models, along with their benefits and challenges.
CLO 2	Analyze cloud application architecture, security mechanisms, and the deployment of web services within and outside cloud environments.
CLO 3	Demonstrate the implementation, reliability, availability, scalability, and security of cloud-based applications and services.
CLO 4	Evaluate cloud security controls, data protection measures, compliance requirements, and risk management strategies.
CLO 5	Develop cloud-based applications using service creation environments such as AWS, Azure, and Google Cloud while considering global data regulations.

CO No.	Course Outcome Description
CO 1	Explain the fundamentals of cloud computing, including its types and service models, along with their benefits and challenges.
CO 2	Analyze cloud application architecture, security mechanisms, and the deployment of web services within and outside cloud environments.
CO 3	Demonstrate the implementation, reliability, availability, scalability, and security of cloud-based applications and services.
CO 4	Evaluate cloud security controls, data protection measures, compliance requirements, and risk management strategies.
CO 5	Develop cloud-based applications using service creation environments such as AWS, Azure, and Google Cloud while considering global data regulations.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation ESE			Total		
				MSE	CE	P	Theory	P	Total
3	0	2	4	60	20	20	20	20	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction to Cloud Computing:	20%	6
	Cloud Computing definition; Private, public and hybrid		
	cloud. Cloud types; IaaS, PaaS, SaaS. Benefits and chal-		
	lenges of cloud computing, public vs private clouds, role		
	of virtualization in enabling the cloud; Business Agility:		
	Benefits and challenges to Cloud architecture. Application		
	availability, performance, security and disaster recovery;		
	next-generation Cloud Applications.		
2	Cloud Application Architecture and Security:	20%	9
	Technologies and the processes required when deploying		
	web services - Deploying a web service from inside and		
	outside a cloud architecture - advantages and disadvan-		
	tages.		
3	Implementing Cloud Application, Services and Se-	20%	10
	curity:		
	Reliability, availability and security of services deployed		
	from the cloud. Performance and scalability of services -		
	Cloud Economics: Cloud Computing infrastructures avail-		
	able for implementing cloud-based services. Cloud secu-		
	rity controls, Dimensions of cloud security, Cloud Vulnera-		
	bility and Penetration Testing, Data security, Encryption,		
	Compliance.		
4	Importance of Cloud Technology in Corporates:	20%	10
	Economics of choosing a Cloud platform for an organiza-		
	tion - Based on application requirements, economic con-		
	straints and business needs - Discuss industry cases in-		
	cluding open sources.		

5	Cloud Application Development & IT Model:	20%	10
	Service creation environments to develop cloud-based ap-		
	plications. Development environments for service devel-		
	opment; Amazon, Azure, Google App. Applicability of		
	laws to data stored outside the nation's boundary.		

i. Reference Books:

- 1. "Cloud Computing: Concepts, Technology & Architecture" by Thomas Erl, Ricardo Puttini, Zaigham Mahmood. (TextBook)
- 2. "Cloud Security and Privacy: An Enterprise Perspective and Compliance" by Tim Mather, Subra Kumaraswamy, Shahed Latif
- **3.** "Cloud Computing: Principles and Paradigms" by Rajkumar Buyya, James Broberg, Andrzej M. Goscinski
- 4. "Network Attacks and Exploitation: A Framework." by Wiley Monte, M.
- **5.** "Architecting the Cloud: Design Decisions for Cloud Service Models" by Michael J. Kavis
- **6.** "Cloud Computing for Dummies" by Judith S. Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper

j. List of Practicals:

- 1. Analyze the Cloud computing setup with its vulnerabilities and applications using different architectures.
- 2. Design different workflows according to requirements and apply map-reduce programming model.
- **3.** Apply and design suitable Virtualization concept, Cloud Resource Management and design scheduling algorithms.
- 4. Create combinatorial auctions for cloud resources and design scheduling algorithms for computing clouds.
- **5.** Assess cloud Storage systems and Cloud security, the risks involved, its impact and develop cloud application.
- **6.** Automating Compliance and Securing Data and Applications in AWS.
- 7. Improving Visibility, Threat Detection, and Investigations in AWS.
- 8. Cloud enumeration using Kali Linux.
- **9.** Deploying Web Application on AWS EC2.
- 10. Pentest cloud-based application using Kali Linux.

a. Course: Reverse Engineering and Malware Analysis

b. Course Code: 303105389

c. Prerequisite: Basic programming knowledge (preferably in languages such as C or Python) Familiarity with computer architecture and operating systems concepts.

d. Rationale: Learning reverse engineering and malware analysis is crucial for effective threat detection, incident response, vulnerability analysis, and the development of robust security measures to combat emerging threats in the rapidly evolving cybersecurity landscape.

e. Course Learning Objectives:

CLO 1	Understand the fundamentals of reverse engineering, its applications, and its role in cybersecurity.
CLO 2	Perform static analysis techniques such as file format analysis, malware hashing, PE headers, and DLL inspection.
CLO 3	Conduct dynamic analysis using sandboxing, process monitoring, network sniffing, and behavioral analysis tools.
CLO 4	Evaluate malware defensive techniques including obfuscation, packing, anti-debugging, and anti-virtual machine strategies.
CLO 5	Perform network traffic inspection and memory forensics to detect malware indicators and system compromises.

CO No.	Course Outcome Description
CO 1	Perform static analysis using antivirus scanning, hashing, PE headers, and DLL inspection.
CO 2	Conduct dynamic analysis with sandboxing, process monitoring, and network sniffing.
CO 3	Analyze x86 assembly using IDA Pro, Windows API, and malware behaviors.
CO 4	Evaluate persistence mechanisms like registry modifications, scheduled tasks, and PowerShell attacks.
CO 5	Bypass malware defenses by unpacking, countering anti-debugging, and anti-VM techniques.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	0	1	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction to Malware Analysis	15%	8
	Static Analysis Techniques, Behavior Analysis, Debugging		
	and Disassembly Techniques, Obfuscation Techniques.		
2	Basic Static Analysis	15%	8
	Antivirus scanning, Malware hashing, Detect malware		
	packer, Inspect Portable Executable (PE) Header, Explor-		
	ing Dynamic Link Library (DLL).		
3	Basic Dynamic Analysis	20%	9
	Sandboxing, Dynamic analysis tools, Process monitor,		
	Process explorer, Snapshot, Network monitoring, Packet		
	sniffing, Fake services.		
4	Core x86 Assembly Concepts	25%	10
	Reverse engineering code analysis with IDA Pro, Windows		
	API, Malware behaviors, PowerShell attacks, Persistence		
	mechanisms.		
5	Self-Defending Malware	25%	10
	Packing techniques, Unpacking complexities, Bypassing		
	analysis defenses, Anti-debugging, Anti-virtual machine		
	techniques.		

i. Reference Books:

- 1. "Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software" by Michael Sikorski and Andrew Honig. (TextBook)
- 2. "Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and Obfuscation" by Bruce Dang, Alexandre Gazet, and Elias Bachaalany.
- **3.** "Malware Analyst's Cookbook and DVD: Tools and Techniques for Fighting Malicious Code" by Michael Ligh, Steven Adair, Blake Hartstein, and Matthew Richard.

4. "Reversing: Secrets of Reverse Engineering" by Eldad Eilam.

- 1. Lab Setup for Reverse Engineering and Malware Analysis.
- 2. Static Analysis Techniques: File format analysis, Identifying suspicious patterns.
- **3.** Dynamic Analysis Techniques: Virtual environments, Process monitoring, System interactions.
- 4. Malware Obfuscation and Packing Techniques: Detecting anti-analysis tricks.
- 5. Code Analysis and Disassembly: Analyzing disassembled code.
- **6.** Malware Persistence and Anti-Analysis Techniques: Rootkits, Stealthy malware behaviors.
- 7. Network Analysis and Traffic Inspection: Identifying malicious network activities.
- 8. Memory Analysis and Malware Behavior: Detecting injected code and DLLs.
- **9.** Advanced Malware Analysis Techniques: Control flow graphs, Reverse engineering cryptographic algorithms.
- 10. Incident Response and Forensics: Creating signatures and YARA rules for malware detection.

a. Course: Employability Skills

b. Course Code: 303193353

c. Prerequisite: Basic knowledge of English communication and soft skills fundamentals.

d. Rationale: To enhance students' English proficiency, interpersonal communication, and job readiness through resume building, mock interviews, group discussions, and IELTS training.

e. Learning Objectives:

CLO 1	Enhance English communication skills through IELTS-based listening, speaking, reading, and writing modules.
CLO 2	Develop a professional resume and cover letter tailored to job applications, higher education, or scholarships.
CLO 3	Strengthen interpersonal and critical thinking skills through mock group discussions on current and technical topics.
CLO 4	Prepare for personal and case interviews by understanding employer expectations and frequently asked questions.
CLO 5	Improve employability and global readiness through simulated workplace communication and assessment activities.

CO 1	Demonstrate proficiency in IELTS-based communication skills applicable in global academic and professional settings.
CO 2	Create an effective resume and cover letter that align with specific job profiles or academic pursuits.
CO 3	Participate actively and confidently in structured group discussions, contributing valuable perspectives.
CO 4	Exhibit readiness for interviews by articulating thoughts clearly, addressing employer expectations, and handling case scenarios.
CO 5	Apply employability strategies and soft skills learned through mock assessments to real-world recruitment processes.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
-	1	-	1	-	100	-	-	-	100

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	$\operatorname{Hours}(\%)$
1	IELTS Mock Test	25	5
	To develop students English Learning and improve their		
	employment prospects.		
	To create opportunity for students to study around the		
	globe & give them Practice on :		
	Listening		
	Speaking		
	Reading		
	Writing		
2	Resume Building	25	2
	Cover letter & Resume Writing		
	Students will create a functional resume along with cover		
	letter that they will be able to use when applying for a		
	job, college or a scholarship.		
3	Advanced Group Discussion: Mock Round	25	4
	To provide students with an avenue to train themselves in		
	various interpersonal skills.		
	To prepare students for the Group Discussion after the		
	written test for employment or for admission to educa-		
	tional institutes.		
	To generate new ideas or new approaches for solving a		
	problem.		
	To reach a solution on an issue of concern.		
4	Personal Interview: Mock Round	25	4
	Preparing For The Interview		
	Review Question		
	Employer's Expectation		
	Case Interview		

i. Reference Books:

- 1. Business Correspondence and Report Writing by R. Sharma and K. Mohan
- 2. Communication Skills and Soft Skills by Suresh Kumar, Pearson Publication, 2010

a. Course: Artificial Intelligence

b. Prerequisite: Basic understanding of algorithms and probability theory.

c. Course Code: 303105307

d. Rationale: To provide foundational knowledge and hands-on experience in Artificial Intelligence, covering search techniques, reasoning, learning, expert systems, and neural networks.

e. Course Learning Objectives:

CLO 1	Understand and describe the foundational concepts, problem-solving approaches, and major application areas of Artificial Intelligence.
CLO 2	Apply various AI search strategies (e.g., BFS, DFS, A*, AO*) and game-playing algorithms (like Minimax and Alpha-Beta pruning) to solve classic AI problems efficiently.
CLO 3	Demonstrate knowledge representation using predicate calculus, semantic networks, production rules, and apply reasoning methods for logical inference and decision-making.
CLO 4	Design and implement learning models including rote learning, inductive learning, and neural networks (supervised, unsupervised) to solve data-driven problems.
CLO 5	Analyze and apply uncertain reasoning techniques such as Bayesian networks, fuzzy logic, and expert systems to real-world scenarios in intelligent decision-making.

CO No.	Course Outcome Description
CO 1	Explain the fundamental concepts and major areas of Artificial Intelligence.
CO 2	Apply search techniques such as BFS, DFS, A*, and heuristic-based methods to solve AI problems.
CO 3	Implement knowledge representation techniques including predicate calculus, semantic nets, and reasoning methods.
CO 4	Develop AI models using learning techniques like supervised, unsupervised, and reinforcement learning.
CO 5	Analyze and apply uncertain reasoning methods, fuzzy logic, expert systems, and neural networks to real-world problems.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	\mathbf{T}	P	\mathbf{C}	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction	10%	6
	What is artificial Intelligence? Major areas of Artificial In-		
	telligence, Introduction to AI Problems and applications,		
	Defining problems as a state space search, Production sys-		
	tems.		
2	Search techniques	20%	12
	Breadth first search, Depth first search, Hill climbing,		
	Best first search, A* algorithm, AO* Algorithm, Itera-		
	tive Deepening Search, IDA*, Recursive Best First Search,		
	Constraint Satisfaction and Heuristic Repair, Applications		
3	Game Playing:	10%	6
	Introduction to Game playing, The Minimax Search Pro-		
	cedure, AlphaBeta Procedure, The Search Efficiency of		
	Alpha-Beta Procedure, Recent applications		
4	Knowledge Representation	10%	6
	Production rules, Predicate Calculus- Rules of Inference;		
	Semantics and Deduction; Unification; Soundness and		
	completeness of rules; Resolution; Resolution refutation,		
	Semantic Nets, Frames, symbolic reasoning, statistical		
	reasoning.		
5	Learning	10%	6
	Definition, Rote learning, learning by taking advice, learn-		
	ing in problem solving, learning from examples, induction		

6	Uncertain Reasoning	20%	12
	Joint probability, Marginal probability, Probabilistic rea-		
	soning and Bayes Nets, forward reasoning versus backward		
	reasoning, Certainty Factors, Fuzzy set theory, Fuzzy re-		
	lation, fuzzification, Fuzzy value assignment methods, In-		
	ference and Composition methods- Min-Max composition,		
	max product composition, Defuzzification methods, Ap-		
	plications and recent developments		
7	Expert Systems (ES)	10%	6
	Advantages and characteristics of Expert System, Knowl-		
	edge engineering, Steps in Developing an Expert System,		
	Mycin, ES Applications and recent developments.		
8	Connectionist Models	10%	6
	Introduction to Neural Network, Activation functions, Su-		
	pervised and Unsupervised Learning, Neuro Processing		
	and Neural Network Learning, Learning, Learning rules,		
	Single layer Perceptrons and Classification, Introduction		
	to Multilayer Neural Networks, Neural Network Applica-		
	tions and recent developments		

- 1. "Artificial Intelligence" By Elaine Rich and Kevin Knight TMH
- **2.** "Artificial Intelligence: A New Synthesis" By N. J. Nilsson Harcourt Publishers
- **3.** "Fuzzy Logic and Engineering Application" By Tomthy Ross Wiley Publication.
- **4.** "Expert Systems Principles and Programming" By Giarratano & Riley son Vikas Publishing House 3rd Edition
- 5. "Elements of Artificial Neural Network" By Kishan Mehrotra
- **6.** "Genetic Algorithms in search, Optimization and Machine" By Goldberg D. E Addison Wesley New York
- 7. "Neural Networks" By J. M. Jurada

- 1. Write a program to implement Tic Tac Toe game.
- 2. Write a program to implement 8 Puzzle problems.
- **3.** Write a program to implement Water Jug Problem.
- 4. Write a program to implement Travelling Salesman Problem.
- **5.** Write a program to implement N Queens Problem.
- 6. Write a program to implement Tower of Hanoi Problem.
- 7. Write prolog programs for following problems.
- **8.** Demonstrate Knowledge Base and Query System in prolog.

- 9. Convert Prolog predicates into Semantic Net.
- ${\bf 10.}\,$ Demonstrate supervised learning using artificial neural network.

a. Course: Digital Forensics and Incident Response

b. Course Code: 303105395

c. Prerequisite: Basic understanding of computer networks and operating systems.

d. Rationale: To provide foundational knowledge and hands-on experience in Digital Forensics and Incident Response, covering forensic methodologies, data acquisition, analysis techniques, and incident response strategies.

e. Course Learning Objectives:

CLO 1	Understand and explain fundamentals of computer systems, cybercrimes, and methods for collecting and handling electronic evidence.
CLO 2	Apply forensic techniques to acquire, authenticate, and analyze data from disk images, memory dumps, and live systems.
CLO 3	Use tools like FTK Imager, Autopsy, Volatility, and Wireshark for disk imaging, RAM analysis, and email forensics.
CLO 4	Interpret legal frameworks under IT Act 2000 and analyze case studies on digital crime, penalties, and ethics.
CLO 5	Create professional forensic reports by documenting findings and presenting evidence clearly to legal and non-technical audiences.

CO No.	Course Outcome Description
CO 1	Explain computer fundamentals by describing the history, components, memory hierarchy, storage devices, system software, and application software.
CO 2	Classify cyber crimes by identifying types, handling electronic evidence, and analyzing emerging digital crimes.
CO 3	Apply digital forensic techniques by performing data acquisition, authentication, and forensic readiness assessments.
CO 4	Utilize forensic tools for disk imaging, data recovery, steganography detection, and processing digital evidence.
CO 5	Analyze cybercrime case studies by examining IT Act 2000 offenses, penalties, and legal adjudications.

Teaching Scheme			Evaluation Scheme						
L	\mathbf{T}	P	\mathbf{C}	Internal Evaluation		ESE		Total	
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Basics of Computer:	20%	9
	History of Computers, components of computer - input		
	and output devices, CPU, Memory hierarchy, types of		
	memory, storage devices, system software, application		
	software.		
	Cyber Crime and types:		
	Definition and types of cybercrimes, electronic evidence		
	and handling, electronic media, collection, searching,		
	and storage of electronic media, introduction to internet		
	crimes, hacking, credit card and ATM frauds, emerging		
	digital crimes and modules.		
2	Digital Forensics and Investigation Process:	25%	11
	Introduction to Digital forensics - Evolution of Digital		
	forensics - Stages of Digital forensic process - Benefits of		
	Digital forensics - uses of Digital forensics - objectives of		
	Digital forensics - Role of Forensic Investigator - Forensic		
	Readiness.		
	Cyber Crime Investigation:		
	Assess the situation, Acquire the data, Analyze the data,		
	Report the investigation.		
	Data Acquisition and Authentication:		
	Windows Systems - FAT12, FAT16, FAT32, and NTFS,		
	Mac file systems, computer evidence, Internet evidence,		
	OS evidence, and their forensic applications.		
	Challenges in Digital Forensic Investigations.		

3	Forensic Tools and Processing of Electronic Evidence: Introduction to Forensic Tools, tools for Disk Imaging, Data Recovery, Autopsy, and FTK tools. Anti-Forensics and Countermeasures: Steganography, retrieving information, process of computer forensics and digital investigations, processing of digital evidence, digital images, data recovery, multimedia evidence. Retrieving deleted data: desktops, laptops, and mobiles, retrieving data from slack	20%	9
4	space, renamed files, compressed files. Email Investigations and Report Writing: Email, Types of Email, Email Protocols, Email Attacks, Privacy in Emails, Email Forensics, Email Forensic Tools. Report Preparation: Gathering Data, analyzing results, Outlining and organizing the report, writing and revising the rough draft. Expert Witness: Legal aspects of computing.	15%	7
5	Case Studies with IT Act 2000 and Penalties: Offenses under the Information and Technology Act 2000 - Penalty and adjudication - Punishments for contraventions under the Information Technology Act 2000 (Case Laws, Rules, and recent judicial pronouncements to be discussed) - Limitations of Cyber Law. Case Studies: Blackmailing, credit card fraud, phishing, Hosting Obscene Profiles, Illegal Money Transfers, Intellectual property Theft, Email Forensics, data theft, Hacking, Morphed Photographs, etc.	20%	9

- 1. "Guide to Computer Forensics and Investigations" by B. Nelson, A. Phillips, and C. Steuart, 4th Edition, Course Technology, 2010 (TextBook)
- ${\bf 2.}$ "The Basics of Digital Forensics" by John Sammons, 2nd Edition, Elsevier, 2014
- **3.** "Computer Forensics: Computer Crime Scene Investigation" by John Vacca, 2nd Edition, Laxmi Publications, 2005

- 1. Setting up a DFIR lab.
- 2. Non-Volatile Disk imaging using FTK Imager.

 In a digital forensics investigation, a company suspects that an employee has leaked confidential information to a competitor. As a digital forensic analyst,

how would you use FTK Imager to conduct a non-volatile disk imaging process on the employee's computer to search for evidence of the leak?

3. Analyzing the Physical image using Autopsy to extract evidence.

A cybercrime investigation team has seized a suspect's hard drive, which is believed to contain evidence related to a recent hacking incident. As a digital forensic analyst, you are tasked with analyzing the physical image of the hard drive to extract evidence. How would you use Autopsy to analyze the physical image and identify any relevant evidence?

4. Analyzing the Live running OS using Autopsy to extract evidence without Imaging.

A company suspects that an employee has been using a company laptop to engage in illegal activities during business hours. As a digital forensic analyst, you are tasked with analyzing the live running OS of the laptop to extract evidence without imaging the device. How would you use Autopsy to analyze the live running OS and identify any relevant evidence while ensuring the employee's privacy is respected?

5. Creating RAM dumps using Dump-IT and FTK.

A company suspects that a cyber attack has occurred on their network and they suspect that the attacker might still be active in their system's memory. As a digital forensic analyst, you are tasked with creating a RAM dump to investigate the incident. How would you use Dump-IT and FTK to create a RAM dump and analyze it for any evidence of the attack?

- 6. Analyzing the RAM Dump using Volatility Framework to extract evidence. A company has experienced a security breach, and the attacker is believed to have used a rootkit to hide their presence in the system's memory. As a digital forensic analyst, you are tasked with analyzing a RAM dump to identify any evidence of the attack. How would you use the Volatility Framework to analyze the RAM dump and identify any evidence of the rootkit and the attacker's activity?
- 7. Setup SIEM tool and upload the extracted logs from a Windows system. A company wants to improve their cybersecurity posture by implementing a Security Information and Event Management (SIEM) tool to monitor their network and systems for any suspicious activity. As a cybersecurity analyst, you are tasked with setting up the SIEM tool and configuring it to receive and analyze logs from a Windows system. How would you set up the SIEM tool and upload the logs from the Windows system to ensure that the tool is properly configured and able to detect any security incidents?
- **8.** Installing Wireshark and creating PCAP files for analysis. Application of Wireshark search filters.

A network administrator needs to analyze network traffic to troubleshoot a network issue. As a cybersecurity analyst, you are tasked with installing Wireshark on the administrator's computer and showing them how to create PCAP files for analysis. You will also need to demonstrate the use of Wireshark's search filters to help the administrator find the root cause of the network issue. How would you install Wireshark, create and analyze PCAP files, and apply search filters to identify the source of the network problem?

9. Network malware logs analysis CTF (using Wireshark).

A company's network has been infected by a malware attack, resulting in the loss of sensitive data. As a forensic analyst, you have been tasked with analyzing the network logs to identify the source and type of malware. Using Wireshark, can you walk us through the steps you would take to extract and analyze the relevant logs?

10. Windows security logs analysis (using SPLUNK).

A company has experienced a data breach and has requested a forensic investigation to identify the cause of the breach. The company uses Windows servers and workstations, and the security logs have been collected for analysis. The forensic team is tasked with analyzing the security logs using SPLUNK to identify any suspicious activities that may have led to the data breach.

Question: What are the steps involved in setting up and configuring SPLUNK to analyze Windows security logs? How can SPLUNK be used to identify potential security threats in the collected logs? Can the forensic team identify the cause of the data breach by analyzing the security logs? If so, what are the indicators of compromise that they have discovered?

11. Digital Forensic Report Writing.

You are a digital forensic analyst who has just completed an investigation of a cyber attack on a company's network. Your client is a legal team representing the company and they require a comprehensive report of your findings.

Questions: What information should you include in your report, and what should be the structure and format of the report? How will you ensure that the report is accurate, clear, and concise while avoiding technical jargon? What are the best practices for presenting complex technical information to non-technical stakeholders in a way that is easily understandable?

a. Course: Data Visualization and Data Analytics

b. Course Code: 303105314

c. Prerequisite: Database Management System, Linear Algebra, and Statistics.

d. Rationale: Data Analytics helps small and large organizations maximize the value of their data, unearth insights, build plans, and respond in real-time to customer demand.

e. Course Learning Objectives:

CLO 1	Understand the core concepts of data visualization and data analytics, including the DIKW pyramid, infographics, and key differences between analysis and analytics.
CLO 2	Apply statistical techniques such as central tendency, variability measures, correlation, and histogram analysis to explore and interpret datasets.
CLO 3	Prepare and preprocess data by handling missing values, applying data cleaning techniques, and implementing dimensionality reduction using PCA and feature selection.
CLO 4	Implement regression models including simple, multiple, and logistic regression, and evaluate their effectiveness using metrics such as R-squared and SSE.
CLO 5	Use classification, clustering, and visualization tools like K-NN, decision trees, K-means clustering, and Power BI to extract insights and communicate findings interactively.

CO No.	Course Outcome Description
CO 1	Explain data visualization and analytics concepts by illustrating the DIKW Pyramid, infographic representations, and real-world applications.
CO 2	Perform statistical analysis by computing measures of central tendency, variance, correlation, and histogram-based data distribution.
CO 3	Prepare and clean datasets by handling missing values, applying PCA, and using feature selection techniques.
CO 4	Implement regression models by analyzing relationships using linear, multiple, and logistic regression with R-squared evaluation.
CO 5	Apply classification and clustering techniques by utilizing K-NN, decision trees, K-means clustering, and Power BI for data insights.

Teaching Scheme			Evaluation Scheme						
L	\mathbf{T}	P	C	Internal Evaluation		ESE		- Total	
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction:	15%	7
	Introduction to data visualization & analytics, infographic		
	representation of terminologies, DIKW (Data, Informa-		
	tion, Knowledge, Wisdom) Pyramid, difference between		
	analysis and analytics, applications of data visualization,		
	applications of data analytics.		
2	Descriptive & Inferential Statistics:	30%	12
	Population and sample, types of data (nominal, ordi-		
	nal, discrete, continuous), measurement levels, representa-		
	tion of categorical variables, measures of central tendency		
	(mean, median, mode), skewness, variance, standard devi-		
	ation, coefficient of variation, covariance, correlation, his-		
	togram analysis, distribution & its types, central limit the-		
	orem.		
3	Data Preparation:	10%	5
	Dealing with missing values, data cleaning using various		
	methods, principal component analysis (PCA), feature se-		
	lection methods.		
4	Regression:	25%	11
	Application of regression for analytics, introduction to re-		
	gression, simple and multiple linear regression, correlation		
	vs. regression, SST (Sum of Squares Total), SSR (Sum		
	of Squares Regression), SSE (Sum of Squares Error), R-		
	Square, Adjusted R-Squared, logistic regression.		
5	Classification & Clustering:	20%	10
	Use of classification & clustering for insights, K-NN, deci-		
	sion trees, K-means clustering, cluster analysis. Introduc-		
	tion to analytics tools like Power BI.		

- 1. The Art of Statistics: Learning from Data (Pelican Books) (Text-Book)
- 2. Principles of Statistics (TextBook)
 By M. G. Bulmer, Dover Publications Inc.
- 3. Statistics 101: From Data Analysis and Predictive Modeling to Measuring Distribution and Determining Probability, Your Essential Guide to Statistics

By David Borman, Adams Media.

4. Beautiful Visualization

By Noah Iliinsky, Julie Steele. Publisher(s): O'Reilly Media, Inc. ISBN: 9781449379865.

- 1. Use MS-Excel to create a pivot table & apply statistical measures to it.
- 2. Use the table created in the above practical to generate different charts.
- **3.** Perform the Histogram Analysis of a given dataset using the Data Analysis Toolbox of Excel.
- 4. Use Python libraries to generate charts from data stored in Excel.
- 5. Perform Multiple Linear Regression on data.
- **6.** Perform Logistic Regression on a dataset and interpret the regression table.
- 7. Use a dataset & apply K-NN to get insights from data.
- 8. Use a dataset & apply K-means clustering to get insights from data.
- 9. Study about tools like Orange, Tableau, Weka, etc., for data visualization.
- 10. Given a case study: Interactive Data Analytics with Power BI.

a. Course: Mobile Application Development

b. Course Code: 303105379

c. Prerequisite: Fundamentals of Computer Programming

d. Rationale: Mobile application development is the process of creating software applications that run on a mobile device, and a typical mobile application utilizes a network connection to work with remote computing resources.

e. Course Learning Objectives:

CLO 1	Understand and set up the Android development environment including JDK, Android Studio, SDK tools, and Virtual Devices.
CLO 2	Design user interfaces using Android layouts, Material Design principles, and UI components like widgets, menus, and dialogs.
CLO 3	Implement Android components such as Activities, Intents, Services, and Broadcast Receivers with resource management.
CLO 4	Use data storage methods including Shared Preferences, file handling, SQLite, and Content Providers in Android apps.
CLO 5	Build and deploy Android apps by integrating web APIs, handling JSON, notifications, and app publishing practices.

CO No.	Course Outcome Description
CO 1	Develop Android applications by setting up the development environment, configuring Android SDK, and managing the Android Manifest file.
CO 2	Implement Android components and resources by utilizing activities, intents, services, broadcast receivers, and localization techniques.
CO 3	Design user interfaces using Material Design principles, various layout structures, UI widgets, menus, and dialog boxes.
CO 4	Manage data storage by integrating Shared Preferences, SQLite databases, content providers, and file handling mechanisms.
CO 5	Integrate web services and publish applications by implementing JSON parsing, network communication, push notifications, and app deployment strategies.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	Т	P	C	Internal Evaluation ESE			Total		
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Android Operating System and Development En-	15%	7
	vironment:		
	Introduction, Android Architecture, Versions, Features,		
	OHA, Dalvik VM, Android SDK, Android Development		
	Tools, Android Virtual Devices, Development Environ-		
	ment, Directory Structure of Android Application, An-		
	droid Manifest file.		
2	Android Components and Resource Handling:	15%	7
	Components: Context, Activity, Intent, Service, Broad-		
	cast Receiver. Resources: String, Color, Drawable, Styles,		
	Theme. Localization: Prepare Application for Localiza-		
	tion.		
3	Android User Interface Elements:	15%	7
	Introduction of Material Design, UI and UX. Layouts:		
	Linear Layout, Absolute Layout, Frame Layout, Relative		
	Layout, Constraint Layout, Dynamic Implementation of		
	Layout. UI widgets with properties, events, and methods,		
	Dialog boxes, Menus: Option and Context.		
4	Working with Views and Fragment:	10%	3
	Views: GridView, WebView, ScrollView, ListView, Recy-		
	clerView, CardView. Fragment: Introduction, Life Cycle,		
	Implementation.		
5	Data Storage Techniques:	15%	7
	Shared Preferences, Files and Directories, SQLite		
	Database Connectivity and Operations, Content		
	Providers: Basics, Content URI, Content Resolver,		
	Built-in content providers.		

6	Web Application Integration Techniques:	15%	7
	Introduction of Async Task, Communication with Web		
	API, Introduction to JSON data, JSON Parsing, Imple-		
	mentation of Third-Party Library to Fetch Network Data,		
	Notifications, Telephony API, Google API.		
7	Polish and Publish Application:	15%	7
	Different Ways to Monetize, Versioning, Signing, Pack-		
	aging and Beta Test of Mobile Application, Distributing		
	Application on Mobile Market Place.		

1. Android Wireless Application Development

By Lauren Darcey and Shane Conder — Pearson Education, 2011 — Second Edition

2. Head First Android Development: A Brain Friendly Guide

By David Griffiths and Dawn Griffiths — O'Reilly

3. Professional Android 4 Application Development

By Reto Meier — John Wiley & Sons

4. Beginning Android

By Mark L Murphy — Apress

- 1. Compare various operating systems with Android OS.
- 2. Install and configure Java Development Kit (JDK), Android Studio, and Android SDK.
- **3.** Configure Android Development Tools (ADT) plug-in and create an Android Virtual Device.
- 4. Develop a program to display "Hello World" on screen.
- 5. Develop a program to implement Linear Layout and Absolute Layout.
- **6.** Develop a program to implement Frame Layout, Table Layout, and Relative Layout.
- 7. Create an application that takes the name from a text box and shows a hello message along with the name entered in the text box when the user clicks the OK button.
- **8.** Create a screen that has input boxes for:
 - i. User Name
 - ii. Password
 - iii. Address
 - iv. Gender (radio buttons for Male and Female)
 - v. Age (numeric)
 - vi. Date of Birth (Date Picker)

- vii. State (Spinner)
- viii. Submit button

On clicking the Submit button, print all the data below the Submit button (use any layout).

- **9.** Design an Android application to create a page using Intent and one Button and pass the values from one Activity to a second Activity.
- 10. Design an Android application to send SMS using Intent.
- 11. Create an Android application using Fragments.
- 12. Design an Android application using a Radio Button.
- 13. Design an Android application for a menu.

a. Course: MEA(R)N Stack Web Development

b. Course Code: 303105385

c. Prerequisite: Database Management System, SQL, Basics of JavaScript and Web Development

d. Rationale:

- (a) Understanding the fundamentals of JavaScript programming and web development
- (b) Acquiring knowledge about how to store and retrieve data using MongoDB
- (c) Acquiring knowledge about how to handle server-side logic and develop APIs using Node.js, a server-side JavaScript runtime
- (d) Learning how to create web apps with Express.js
- (e) Acquiring knowledge about how to connect to APIs and create dynamic user interfaces using AngularJS, a potent front-end JavaScript framework
- (f) Building a full-stack web application from scratch using the MEAN stack
- (g) Understanding best practices for deploying, testing, and maintaining MEAN stack applications

e. Course Learning Objectives:

CLO 1	Set up and configure the MEAN stack development environment by installing and managing MongoDB, Express.js, Angular, and Node.js.
CLO 2	Develop and manage databases using MongoDB by performing CRUD operations, creating indexes, and designing schemas for structured data storage.
CLO 3	Build server-side web applications using Node.js and Express.js, including API development, authentication, middleware handling, and security implementation.
CLO 4	Create dynamic front-end applications using Angular, with a focus on components, routing, data binding, forms, and HTTP communication.
CLO 5	Integrate, deploy, and optimize full-stack MEAN applications by connecting front-end and back-end systems, implementing real-time data features, and using cloud deployment practices.

f. Course Outcome:

CO No.	Course Outcome Description
CO 1	Set up and configure the MEAN stack by installing and managing MongoDB, Express.js, Angular, and Node.js for web development.
CO 2	Perform database operations by implementing CRUD functions, indexing, and schema design in MongoDB.
CO 3	Develop server-side applications using Node.js and Express.js with authentication, security, and middleware handling.
CO 4	Build dynamic front-end applications using Angular components, data binding, form validation, and HTTP communication.
CO 5	Deploy and optimize MEAN stack applications by implementing security measures, performance enhancements, and continuous integration practices.

g. Teaching & Examination Scheme:

Teaching Scheme			Evaluation Scheme						
L	T	P	C	Internal Evaluation ESE			Total		
				MSE	CE	P	Theory P		Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Course Content W - Weightage (%), T - Teaching hours

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction to Web Development and the MEAN	4%	2
	Stack:		
	Overview of web development, Introduction to the MEAN		
	stack, Setting up the development environment		
2	MongoDB:	20%	10
	Introduction to NoSQL databases, Installation and con-		
	figuration of MongoDB, CRUD operations in MongoDB,		
	Indexing and querying in MongoDB, Schema design and		
	data modeling		

3	Node.JS & Express JS:	20%	10
	Introduction to Node.js and Express.js, Middleware and		
	routing, Authentication and security with Passport.js, Er-		
	ror handling and logging		
4	Angular:	30%	13
	Introduction to Angular, Setting up an Angular applica-		
	tion, Components, modules, and services, Data binding		
	and templates, Forms and validation, Routing and navi-		
	gation, HTTP and observables, Building a complete fron-		
	tend for the MEAN stack application		
5	Integration:	10%	3
	Integrating the Angular frontend with the Express.js API,		
	Authentication and user management integration, Han-		
	dling real-time data with WebSockets, Error handling and		
	testing		
6	Deployment and Best Practices:	6%	3
	Preparing the application for deployment, Hosting and		
	server setup options, Security best practices, Performance		
	optimization and testing, Version control and continuous		
	integration		
7	Final Project:	-	-
	Project		

1. MEAN Web Development

By Amos Q. Haviv — Packt Publishing (Textbook)

2. Learning Node.js: A Hands-On Guide to Building Web Applications in JavaScript

By Marc Wandschneider — Addison-Wesley Professional

3. AngularJS: Up and Running: Enhanced Productivity with Structured Web Apps

By Shyam Seshadri and Brad Green — O'Reilly Media

4. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage

By Shannon Bradshaw, Kristina Chodorow, and Eoin Brazil — O'Reilly Media

- 1. Introduction to MEAN stack, Setting up the development environment, Overview of MongoDB, Express.js, Angular, and Node.js.
- 2. Creating and configuring MongoDB, Creating and configuring Express.js, Building RESTful APIs with Express.js.
- **3.** Introduction to Angular, Building basic UI components with Angular, Creating a Single-Page Application (SPA) with Angular.
- **4.** Introduction to Node.js, Creating and configuring Node.js, Building server-side applications with Node.js.

5.	Integrating all components to build a full-stack application, Testing and debugging the application, Deploying the application on a cloud platform.

a. Course: DevOps

b. Course Code: 303105387

c. Prerequisite: Basic knowledge of software development and operations.

d. Course Objective: This course provides a broad introduction to software development and operations in DevOps. The various process models required to develop software applications are also described. The improvement and the collaboration between developers and operators are also described. The students will learn how DevOps helps the software development life cycle and how to manage the infrastructure using automation tools and code.

e. Course Learning Objectives:

CLO 1	Understand and explain DevOps core concepts, principles, workflow, Agile comparison, and the roles of a DevOps engineer.
CLO 2	Use infrastructure automation tools like AWS, Chef, Puppet, Jenkins, Splunk, AppDynamics, and Nagios for configuration and deployment.
CLO 3	Work with Docker and Jenkins to containerize applications and automate build-deploy processes.
CLO 4	Automate testing and CI/CD pipelines using Jenkins with Selenium and TestNG for continuous integration and delivery.
CLO 5	Perform Git operations like branching, merging, stashing, and collaborate on projects using GitHub.

CO No.	Course Outcome Description
CO 1	Explain DevOps fundamentals by differentiating it from traditional IT and Agile, outlining workflows, principles, and the role of a DevOps engineer.
CO 2	Implement DevOps automation tools by configuring AWS, Chef, Puppet, Jenkins, Splunk, AppDynamics, and Nagios for infrastructure management.
CO 3	Deploy containerized applications by setting up Docker, managing containers, and orchestrating clusters with Docker Swarm.
CO 4	Automate software testing and CI/CD pipelines by integrating Jenkins with Selenium, TestNG, and batch scripting for continuous testing.
CO 5	Manage version control and collaboration by utilizing Git features, workflows, branching strategies, and GitHub project management.

Te	eaching	g Scher	ne	Evaluation Scheme					
L	T	P	C	Internal Evaluation ESE		Total			
				MSE	CE	P	Theory	P	Total
3	0	2	4	20	20	20	60	30	150

L- Lectures; T- Tutorial; P- Practical; C- Credit; MSE- Mid-Semester Evaluation; CE- Continuous Evaluation; ESE- End Semester Examination

h. Course Content:

Course Content W - Weightage (%) , T - Teaching hours

Sr.	Topics	Weightage	Teaching
No.		(%)	Hours
1	Introduction:	15%	7
	What is DevOps? Why DevOps? Where DevOps is Use-		
	ful? History of DevOps, How is DevOps different from		
	traditional IT? Why is DevOps used? DevOps Workflow,		
	How is DevOps different from Agile? DevOps Vs Agile,		
	DevOps Principles, DevOps and Software Development		
	Life Cycle, Roles, Responsibilities, and Skills of a DevOps		
	Engineer, DevOps Automation Tools, What is the future		
	of DevOps?		
2	Introduction to DevOps Automation Tools:	15%	7
	Infrastructure Automation: Amazon Web Services		
	(AWS), Configuration Management: Chef, Puppet,		
	Deployment Automation: Jenkins, Log Management:		
	Splunk, Performance Management: App Dynamic, Moni-		
	toring: Nagios		
3	Introduction to Docker:	15%	7
	Docker Containers, Use of Docker, Virtualization vs.		
	Docker, Benefits of Docker, Docker Architecture, Docker		
	Engine, Docker Architecture in detail, Docker Installation,		
	Provisioning		
4	Docker Cluster:	15%	7
	Swarm Overview, Swarm Prerequisites, Create Swarm,		
	Adding node to the Swarm, Swarm Deploy and Inspect		
	Service, Swarm Delete Service, Swarm Drain		
5	Introduction to Jenkins:	10%	3
	Jenkins Introduction, Build Cycle, Java GIT Installations,		
	Obtaining and Installing Jenkins		

6	Automated Testing:	15%	7
	Automated Testing, Automated Testing Jenkins Instal-		
	lation on Windows, Automation Testing Eclipse Kepler		
	Installation, Automated Testing TestNG Installation, Au-		
	tomated Testing Selenium, Automation Testing Creating		
	Java Project, Automated Creating and Testing Java Pro-		
	gram, Automation Testing Creating Testing XML, Au-		
	tomation Testing Running TestNG XML, Automation		
	Testing Creating Batch Script, Automation Testing Con-		
	figuring Jenkins Job		
7	GIT:	15%	7
	Version Control - GIT, GIT Features, 3-Tree Architec-		
	ture, GIT Workflow, GIT Soft & Hard Reset, GIT -		
	Clone/Commit/Push, GIT Hub Projects, GIT Hub Man-		
	agement, GIT Rebase & Merge, GIT Stash, Reset, Check-		
	out, GIT Clone, Fetch, Pull, GIT Branching Strategy		

1. DevOps for Beginners: Hands-on Guide By David Johnson, 2016 edition. (TextBook)

2. Building a DevOps Culture

By Mandi Walls, O'Reilly publications, 2013.

3. The DevOps 2.0 Toolkit

By Viktor Farcic, 2016.

4. Achieving DevOps

By Dave Harrison, Knox Lively, Apress publications, 2019.

- 1. Understand DevOps concepts, workflow, and its differences from traditional IT:
 - Define DevOps and explain its importance.
 - Describe the DevOps workflow.
 - Compare DevOps with Agile and traditional IT.
- 2. Set up AWS infrastructure and deploy a virtual machine:
 - Create an AWS account.
 - Launch an EC2 instance and connect via SSH.
 - Deploy a simple web application.
- **3.** Automate configuration management using Chef or Puppet:
 - Install Chef or Puppet on a virtual machine.
 - Configure a node and apply a configuration script.
 - Automate the deployment of a web server.
- 4. Set up Jenkins and automate deployment:

- Install Jenkins on Windows/Linux.
- Configure a Jenkins job to pull code from GitHub.
- Automate a build and deployment pipeline.
- **5.** Implement log management and monitoring:
 - Install and configure Splunk for log analysis.
 - Set up Nagios for system monitoring.
 - Create alerts based on log patterns.
- **6.** Understand Docker and deploy applications in containers:
 - Install Docker and run a container.
 - Create a Dockerfile and build an image.
 - Deploy a multi-container application using Docker Compose.
- 7. Manage container clusters using Docker Swarm:
 - Initialize a Swarm cluster.
 - Add nodes to the cluster.
 - Deploy and inspect services.
- **8.** Automate testing using Selenium and TestNG:
 - Install Selenium and TestNG.
 - Write a test script in Java.
 - Execute the test using TestNG.
- 9. Manage source code using Git:
 - Install Git and configure a repository.
 - Perform commit, push, and pull operations.
 - Work with branching, merging, and rebasing.